Bound states of a Klein-Gordon particle in the presence of a smooth potential well

被引:2
作者
Lopez, Eduardo [1 ]
Rojas, Clara [1 ]
机构
[1] Yachay Tech Univ, Sch Phys Sci & Nanotechnol, Urcuqui 100119, Ecuador
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2020年 / 35卷 / 23期
关键词
Hypergeometric functions; Klein-Gordon equation; bound state solutions; EQUATION;
D O I
10.1142/S0217751X20501407
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the one-dimensional time-independent Klein-Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker M-kappa,M-mu (x) function, and the antiparticle bound state is discussed in terms of potential parameters.
引用
收藏
页数:8
相关论文
共 25 条
[1]   Proper treatment of scalar and vector exponential potentials in the Klein-Gordon equation: Scattering and bound states [J].
Aquino Curi, Elvis J. ;
Castro, Luis B. ;
de Castro, Antonio S. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06)
[2]   KLEIN-GORDON PARTICLES IN DEEP SQUARE WELLS [J].
BAWIN, M ;
LAVINE, JP .
LETTERE AL NUOVO CIMENTO, 1979, 26 (17) :586-592
[3]   EXPONENTIAL POTENTIAL AND KLEIN-GORDON EQUATION [J].
BAWIN, M ;
LAVINE, JP .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 23 (02) :311-320
[4]   Scattering states of Dirac particle equation with position-dependent mass under the cusp potential [J].
Chabab, M. ;
El Batoul, A. ;
Hassanabadi, H. ;
Oulne, M. ;
Zare, S. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (11)
[5]  
Greiner W, 1987, Relativistic Quantum Mechanics, Wave Equations
[6]   Cusp Interaction in Minimal Length Quantum Mechanics [J].
Hassanabadi, H. ;
Zarrinkamar, S. ;
Maghsoodi, E. .
FEW-BODY SYSTEMS, 2014, 55 (04) :255-263
[7]   Scattering states of Cusp potential in minimal length Dirac equation [J].
Ikot, A. N. ;
Hassanabadi, H. ;
Salehl, N. ;
Obong, H. P. ;
Onyeaju, M. C. .
INDIAN JOURNAL OF PHYSICS, 2015, 89 (11) :1221-1226
[8]   Exact solution of inverse-square-root potential V (r) = -α/√r [J].
Li, Wen-Du ;
Dai, Wu-Sheng .
ANNALS OF PHYSICS, 2016, 373 :207-215
[9]  
Lopez E., 2020, CAN J PHYS
[10]   Analytical solution of the Klein Gordon equation with a multi-parameter q-deformed Woods-Saxon type potential [J].
Luetfueoglu, B. C. ;
Ikot, A. N. ;
Chukwocha, E. O. ;
Bazuaye, F. E. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (12)