Positive solutions of second-order semipositone singular three-point boundary value problems

被引:3
作者
Guo, Yingxin [1 ]
机构
[1] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular boundary value problems; Semipositone; Fixed point; Positive solution; EXISTENCE;
D O I
10.14232/ejqtde.2009.1.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of positive solutions for a class of second order semipositone singular three-point boundary value problems. The results are obtained by the use of a Guo-Krasnoselskii's fixed point theorem in cones.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 13 条
[1]   A note on existence of nonnegative solutions to singular semi-positone problems [J].
Agarwal, RP ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (05) :615-622
[2]   Positive solutions for nonlinear singular boundary value problems [J].
Agarwal, RP ;
Wong, FH ;
Lian, WC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (02) :115-120
[3]  
[Anonymous], DIFF INTEGRAL EQNS
[4]  
Deimling K., 1985, NONLINEAR FUNCTIONAL
[5]  
Guo D., 1988, Nonlinear Problems in Abstract Cones
[6]   Existence of multiple positive solutions of singular boundary value problems [J].
Ha, KS ;
Lee, YH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (08) :1429-1438
[7]  
Krasnoselskii M. A., 1984, Geometrical Methods of Nonlinear Analysis
[8]  
Krasnoselskii M. A, 1964, Positive Solutions of Operator Equations
[9]   Existence results for semipositone boundary value problems [J].
Ma, RY ;
Wang, RF ;
Ren, LS .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (02) :189-195
[10]  
WANG J, 2002, NONLINEAR ANAL, V39, P281