SYMBOLIC POWERS OF MONOMIAL IDEALS

被引:42
作者
Cooper, Susan M. [1 ]
Embree, Robert J. D. [2 ]
Ha, Huy Tai [3 ]
Hoefel, Andrew H. [2 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[3] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
symbolic powers; symbolic polyhedron; initial degrees; monomial ideals; COUNTEREXAMPLES; POINTS;
D O I
10.1017/S0013091516000110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal I subset of k[x(0), ..., x(n)] we show that I(t(m+e-1)-e+r) subset of m((t-1)(e-1)+r-1)(I-(m))(t) for all positive integers m, t and r, where e is the big-height of I and m = ( x(0), ..., x(n)). This captures two conjectures (r = 1 and r = e): one of Harbourne and Huneke, and one of Bocci et al. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 17 条