Cellular Source and Mechanisms of High Transcriptome Complexity in the Mammalian Testis

被引:437
作者
Soumillon, Magali [1 ,2 ]
Necsulea, Anamaria [1 ,2 ]
Weier, Manuela [1 ]
Brawand, David [1 ,2 ]
Zhang, Xiaolan [3 ]
Gu, Hongcang [3 ]
Barthes, Pauline [4 ]
Kokkinaki, Maria [5 ]
Nef, Serge [6 ]
Gnirke, Andreas [3 ]
Dym, Martin [5 ]
de Massy, Bernard [4 ]
Mikkelsen, Tarjei S. [3 ,7 ,8 ]
Kaessmann, Henrik [1 ,2 ]
机构
[1] Univ Lausanne, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland
[2] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[3] Broad Inst, Cambridge, MA 02142 USA
[4] CNRS, Inst Genet Humaine, UPR1142, F-34396 Montpellier 5, France
[5] Georgetown Univ, Med Ctr, Dept Biochem & Mol & Cellular Biol, Washington, DC 20057 USA
[6] Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland
[7] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[8] Harvard Univ, Harvard Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
来源
CELL REPORTS | 2013年 / 3卷 / 06期
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
HISTONE MODIFICATIONS; SPERMATOGENIC CELLS; GENE-EXPRESSION; MOUSE; RNA; EVOLUTION; DUPLICATION; CHROMOSOME; LANDSCAPE; CHROMATIN;
D O I
10.1016/j.celrep.2013.05.031
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Understanding the extent of genomic transcription and its functional relevance is a central goal in genomics research. However, detailed genome-wide investigations of transcriptome complexity in major mammalian organs have been scarce. Here, using extensive RNA-seq data, we show that transcription of the genome is substantially more widespread in the testis than in other organs across representative mammals. Furthermore, we reveal that meiotic spermatocytes and especially postmeiotic round spermatids have remarkably diverse transcriptomes, which explains the high transcriptome complexity of the testis as a whole. The widespread transcriptional activity in spermatocytes and spermatids encompasses protein-coding and long noncoding RNA genes but also poorly conserves intergenic sequences, suggesting that it may not be of immediate functional relevance. Rather, our analyses of genome-wide epigenetic data suggest that this prevalent transcription, which most likely promoted the birth of new genes during evolution, is facilitated by an overall permissive chromatin in these germ cells that results from extensive chromatin remodeling.
引用
收藏
页码:2179 / 2190
页数:12
相关论文
共 39 条
  • [1] Understanding what determines the frequency and pattern of human germline mutations
    Arnheim, Norman
    Calabrese, Peter
    [J]. NATURE REVIEWS GENETICS, 2009, 10 (07) : 478 - 488
  • [2] High-resolution profiling of histone methylations in the human genome
    Barski, Artern
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    [J]. CELL, 2007, 129 (04) : 823 - 837
  • [3] Genomic maps and comparative analysis of histone modifications in human and mouse
    Bernstein, BE
    Kamal, M
    Lindblad-Toh, K
    Bekiranov, S
    Bailey, DK
    Huebert, DJ
    McMahon, S
    Karlsson, EK
    Kulbokas, EJ
    Gingeras, TR
    Schreiber, SL
    Lander, ES
    [J]. CELL, 2005, 120 (02) : 169 - 181
  • [4] The evolution of gene expression levels in mammalian organs
    Brawand, David
    Soumillon, Magali
    Necsulea, Anamaria
    Julien, Philippe
    Csardi, Gabor
    Harrigan, Patrick
    Weier, Manuela
    Liechti, Angelica
    Aximu-Petri, Ayinuer
    Kircher, Martin
    Albert, Frank W.
    Zeller, Ulrich
    Khaitovich, Philipp
    Gruetzner, Frank
    Bergmann, Sven
    Nielsen, Rasmus
    Paeaebo, Svante
    Kaessmann, Henrik
    [J]. NATURE, 2011, 478 (7369) : 343 - +
  • [5] Distinct histone modifications define initiation and repair of meiotic recombination in the mouse
    Buard, Jerome
    Barthes, Pauline
    Grey, Corinne
    de Massy, Bernard
    [J]. EMBO JOURNAL, 2009, 28 (17) : 2616 - 2624
  • [6] Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
    Cabili, Moran N.
    Trapnell, Cole
    Goff, Loyal
    Koziol, Magdalena
    Tazon-Vega, Barbara
    Regev, Aviv
    Rinn, John L.
    [J]. GENES & DEVELOPMENT, 2011, 25 (18) : 1915 - 1927
  • [7] The Reality of Pervasive Transcription
    Clark, Michael B.
    Amaral, Paulo P.
    Schlesinger, Felix J.
    Dinger, Marcel E.
    Taft, Ryan J.
    Rinn, John L.
    Ponting, Chris P.
    Stadler, Peter F.
    Morris, Kevin V.
    Morillon, Antonin
    Rozowsky, Joel S.
    Gerstein, Mark B.
    Wahlestedt, Claes
    Hayashizaki, Yoshihide
    Carninci, Piero
    Gingeras, Thomas R.
    Mattick, John S.
    [J]. PLOS BIOLOGY, 2011, 9 (07)
  • [8] CpG islands and the regulation of transcription
    Deaton, Aimee M.
    Bird, Adrian
    [J]. GENES & DEVELOPMENT, 2011, 25 (10) : 1010 - 1022
  • [9] Landscape of transcription in human cells
    Djebali, Sarah
    Davis, Carrie A.
    Merkel, Angelika
    Dobin, Alex
    Lassmann, Timo
    Mortazavi, Ali
    Tanzer, Andrea
    Lagarde, Julien
    Lin, Wei
    Schlesinger, Felix
    Xue, Chenghai
    Marinov, Georgi K.
    Khatun, Jainab
    Williams, Brian A.
    Zaleski, Chris
    Rozowsky, Joel
    Roeder, Maik
    Kokocinski, Felix
    Abdelhamid, Rehab F.
    Alioto, Tyler
    Antoshechkin, Igor
    Baer, Michael T.
    Bar, Nadav S.
    Batut, Philippe
    Bell, Kimberly
    Bell, Ian
    Chakrabortty, Sudipto
    Chen, Xian
    Chrast, Jacqueline
    Curado, Joao
    Derrien, Thomas
    Drenkow, Jorg
    Dumais, Erica
    Dumais, Jacqueline
    Duttagupta, Radha
    Falconnet, Emilie
    Fastuca, Meagan
    Fejes-Toth, Kata
    Ferreira, Pedro
    Foissac, Sylvain
    Fullwood, Melissa J.
    Gao, Hui
    Gonzalez, David
    Gordon, Assaf
    Gunawardena, Harsha
    Howald, Cedric
    Jha, Sonali
    Johnson, Rory
    Kapranov, Philipp
    King, Brandon
    [J]. NATURE, 2012, 489 (7414) : 101 - 108
  • [10] CENTRIFUGAL ELUTRIATION - SEPARATION OF SPERMATOGENIC CELLS ON BASIS OF SEDIMENTATION-VELOCITY
    GRABSKE, RJ
    LAKE, S
    GLEDHILL, BL
    MEISTRICH, ML
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 1975, 86 (01) : 177 - 189