Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles

被引:23
|
作者
Bagheri, G. H. [1 ]
Bonadonna, C. [1 ]
Manzella, I. [1 ]
Pontelandolfo, P. [2 ]
Haas, P. [2 ]
机构
[1] Univ Geneva, Sect Earth & Environm Sci, CH-1205 Geneva, Switzerland
[2] Univ Appl Sci Western Switzerland Geneva HES SO H, CMEFE, CH-1213 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
SMALL WATER DROPS; TERMINAL VELOCITY; SETTLING VELOCITY; DRAG COEFFICIENTS; CYLINDRICAL PARTICLES; CIRCULAR-CYLINDER; SUSPENDED SPHERES; SOLID PARTICLES; SHAPE; MOTION;
D O I
10.1063/1.4805019
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de competence en mecanique des fluides et procedes energetiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] New Model for Non-Spherical Particles Drag Coefficients in Non-Newtonian Fluid
    Liu, Jiankun
    Hou, Zhaokai
    Xu, Guoqing
    Yan, Lipeng
    PROCESSES, 2022, 10 (10)
  • [12] Study on sloshing motion in a liquid pool with non-spherical particles
    Cheng, Songbai
    Li, Xu'an
    Liang, Feng
    Li, Shuo
    Li, Kejia
    PROGRESS IN NUCLEAR ENERGY, 2019, 117
  • [13] A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results
    Dioguardi, Fabio
    Mele, Daniela
    POWDER TECHNOLOGY, 2015, 277 : 222 - 230
  • [14] Dynamics of non-spherical particles in a rotating drum
    Dube, Olivier
    Alizadeh, Ebrahim
    Chaouki, Jamal
    Bertrand, Francois
    CHEMICAL ENGINEERING SCIENCE, 2013, 101 : 486 - 502
  • [15] Deposition of non-spherical particles in bifurcating airways
    Bunchatheeravate, Poom
    Curtis, Jennifer S.
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2014, 19 (08) : 942 - 951
  • [16] Simulation of Precipitation Kinetics with Non-Spherical Particles
    Wu, Kaisheng
    Chen, Qing
    Mason, Paul
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2018, 39 (05) : 571 - 583
  • [17] Droplet Microfluidics for Fabrication of Non-Spherical Particles
    Shum, Ho Cheung
    Abate, Adam R.
    Lee, Daeyeon
    Studart, Andre R.
    Wang, Baoguo
    Chen, Chia-Hung
    Thiele, Julian
    Shah, Rhutesh K.
    Krummel, Amber
    Weitz, David A.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (02) : 108 - 118
  • [18] Fabrication and Characterization of Non-spherical Polymeric Particles
    Patil, Ajinkya
    Dyawanapelly, Sathish
    Dandekar, Prajakta
    Jain, Ratnesh
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2021, 16 (04) : 747 - 758
  • [19] Non-spherical particles for targeted drug delivery
    Chen, Jinrong
    Clay, Nicholas E.
    Park, No-hyung
    Kong, Hyunjoon
    CHEMICAL ENGINEERING SCIENCE, 2015, 125 : 20 - 24
  • [20] Voronoi analysis of the packings of non-spherical particles
    Dong, Kejun
    Wang, Chuncheng
    Yu, Aibing
    CHEMICAL ENGINEERING SCIENCE, 2016, 153 : 330 - 343