Local means, wavelet bases and wavelet isomorphisms in Besov-Morrey and Triebel-Lizorkin-Morrey spaces

被引:38
作者
Rosenthal, Marcel [1 ]
机构
[1] Univ Jena, Math Inst, D-07737 Jena, Germany
关键词
Morrey spaces; Besov spaces; Triebel-Lizorkin spaces; atomic decomposition; local means; wavelets; wavelet bases; wavelet isomorphisms; unconditional bases; MSC (2010) 46E35; 42B35; 42C40; NAVIER-STOKES; HAUSDORFF SPACES; DECOMPOSITION; EQUATIONS; REGULARITY; SYSTEMS;
D O I
10.1002/mana.201200020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider local means with bounded smoothness for Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Based on those we derive characterizations of these spaces in terms of Daubechies, Meyer, Bernstein (spline) and more general r-regular (father) wavelets, finally in terms of (biorthogonal) wavelets which can serve as molecules and local means, respectively. Hereby both, local means and wavelet decompositions satisfy natural conditions concerning smoothness and cancellation (moment conditions). Moreover, the given representations by wavelets are unique and yield isomorphisms between the considered function spaces and appropriate sequence spaces of wavelet coefficients. These wavelet representations lead to wavelet bases if, and only if, the function spaces coincide with certain classical Besov-Triebel-Lizorkin spaces.
引用
收藏
页码:59 / 87
页数:29
相关论文
共 65 条
[1]  
Adams D. R., 2011, ARK MATEMAT IN PRESS
[2]  
Adams DR, 2004, INDIANA U MATH J, V53, P1629
[3]   ON MORREY-BESOV INEQUALITIES [J].
ADAMS, DR ;
LEWIS, JL .
STUDIA MATHEMATICA, 1982, 74 (02) :169-182
[4]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[5]  
[Anonymous], 2008, Banach Center Publications
[6]  
[Anonymous], 2010, Theory of Function Spaces
[7]  
[Anonymous], 1996, CAMBRIDGE TRACTS MAT
[8]  
Arai H, 1997, MATH NACHR, V185, P5
[9]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[10]  
Cannone M., 1995, Ondelettes, paraproduits et NavierStokes