Combining multiple clusterings by soft correspondence

被引:0
作者
Long, B [1 ]
Zhang, ZF [1 ]
Yu, PS [1 ]
机构
[1] SUNY Binghamton, Binghamton, NY 13901 USA
来源
FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combining multiple clusterings arises in various important data mining scenarios. However, finding a consensus clustering front multiple clusterings is a challenging task because there is no explicit correspondence between the classes from different clusterings. We present a new framework based on soft correspondence to directly address the correspondence problem in combining multiple clusterings. Under this framework, we propose a novel algorithm that iteratively computes the consensus clustering and correspondence matrices using multiplicative updating rules. This algorithm provides a final consensus clustering as well as correspondence matrices that gives intuitive interpretation of the relations between the consensus clustering and each clustering from clustering ensembles. Extensive experimental evaluations also demonstrate the effectiveness and potential of this framework as well as the algorithm for discovering a consensus clustering from multiple clusterings.
引用
收藏
页码:282 / 289
页数:8
相关论文
共 50 条
[41]   Maximum likelihood combination of multiple clusterings [J].
Hu, Tianming ;
Yu, Ying ;
Xiong, Jinzhi ;
Sung, Sam Yuan .
PATTERN RECOGNITION LETTERS, 2006, 27 (13) :1457-1464
[42]   A framework to uncover multiple alternative clusterings [J].
Xuan Hong Dang ;
James Bailey .
Machine Learning, 2015, 98 :7-30
[43]   Multiple clusterings of heterogeneous information networks [J].
Shaowei Wei ;
Guoxian Yu ;
Jun Wang ;
Carlotta Domeniconi ;
Xiangliang Zhang .
Machine Learning, 2021, 110 :1505-1526
[44]   Exploring Multiple Clusterings in Attributed Graphs [J].
Guedes, Gustavo Paiva ;
Bezerra, Eduardo ;
Ogasawara, Eduardo ;
Xexeo, Geraldo .
30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, :915-918
[45]   Combining Hierarchical Clusterings Using Min-transitive Closure [J].
Mirzaei, Abdolreza ;
Rahmati, Mohammad .
19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, :3747-3750
[46]   A Diversified Attention Model for Interpretable Multiple Clusterings [J].
Ren, Liangrui ;
Yu, Guoxian ;
Wang, Jun ;
Liu, Lei ;
Domeniconi, Carlotta ;
Zhang, Xiangliang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) :8852-8864
[47]   Inductive Multi-view Multiple Clusterings [J].
Wei, Shaowei ;
Han, Guangyang ;
Wang, Runmin ;
Yang, Yuanlin ;
Zhang, Huiling ;
Li, Sufang .
2021 7TH INTERNATIONAL CONFERENCE ON BIG DATA AND INFORMATION ANALYTICS, BIGDIA, 2021, :308-315
[48]   SIMILARITY-BASED COMBINATION OF MULTIPLE CLUSTERINGS [J].
Hu, Tianming ;
Xiong, Jinzhi ;
Zheng, Gengzhong .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2005, 5 (03) :351-369
[49]   Combining Multiple K-Means Clusterings of Chemical Structures Using Cluster-Based Similarity Partitioning Algorithm [J].
Saeedi, Faisal ;
Salim, Naomie ;
Abdo, Ammar ;
Hentabli, Hamza .
ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 :304-+
[50]   Combining clusterings in the belief function framework (vol 6, 100018, 2020) [J].
Feng, Li .
ARRAY, 2022, 13