Rational Curves and Strictly nef Divisors on Calabi-Yau Threefolds

被引:0
作者
Liu, Haidong [1 ]
Svaldi, Roberto [2 ,3 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, MI, Italy
[3] Ecole Polytech Fed Lausanne, SB MATH GE, MA B1 497,Batiment MA,Stn 8, CH-1015 Lausanne, Switzerland
来源
DOCUMENTA MATHEMATICA | 2022年 / 27卷
关键词
rational curves; strictly nef divisors; CalabiYau; threefolds; MANIFOLDS; CONJECTURE; CONE; ABUNDANCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a criterion for a nef divisor D to be semi-ample on a Calabi-Yau threefold X when D3 = 0 = c2 (X)center dot D and c3 (X) 6= 0. As a direct consequence, we show that on such a variety X, if D is strictly nef and.(D) 6= 1, then D is ample; we also show that if there exists a Cariter divisor D 6= 0 in the boundary of the nef cone of X, then X contains a rational curve when its topological Euler characteristic is not 0
引用
收藏
页码:1581 / 1604
页数:24
相关论文
共 46 条
[1]  
[Anonymous], 1983, Lecture Notes in Math.
[2]  
[Anonymous], 2013, Cambridge Tracts in Mathematics, DOI [10.1017/CBO9781139547895, DOI 10.1017/CBO9781139547895]
[3]  
[Anonymous], 1994, Journal of Algebraic Geometry
[4]  
Batyrev V., 1999, London Math. Soc. Lecture Note Ser., P1
[5]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[6]  
BRODY R, 1978, T AM MATH SOC, V235, P213, DOI 10.2307/1998216
[7]   Strictly nef divisors [J].
Campana, Frederic ;
Chen, Jungkai A. ;
Peternell, Thomas .
MATHEMATISCHE ANNALEN, 2008, 342 (03) :565-585
[8]   SINGULAR HERMITIAN METRICS ON POSITIVE LINE BUNDLES [J].
DEMAILLY, JP .
LECTURE NOTES IN MATHEMATICS, 1992, 1507 :87-104
[9]  
Diverio S., 2012, OBERWOLFACH REP, V9, P2612, DOI [10.48550/arXiv.1311.6612..1600, DOI 10.48550/ARXIV.1311.6612..1600]
[10]  
Diverio S, 2019, DOC MATH, V24, P663