The Crank-Nicolson-Galerkin finite element method for a nonlocal parabolic equation with moving boundaries

被引:19
作者
Almeida, Rui M. P. [1 ]
Duque, Jose C. M. [1 ]
Ferreira, Jorge [2 ]
Robalo, Rui J. [1 ]
机构
[1] Univ Beira Interior, Fac Sci, Dept Math, Covilha, Portugal
[2] Univ Fed Fluminense, Ctr Math, Dept Math Sci VCE, Rio De Janeiro, Brazil
关键词
nonlinear parabolic system; nonlocal diffusion term; reaction-diffusion; convergence; numerical simulation; Crank-Nicolson; finite element method; ASYMPTOTIC-BEHAVIOR; DOMAINS; NONLINEARITY; TERMS;
D O I
10.1002/num.21957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1515-1533, 2015
引用
收藏
页码:1515 / 1533
页数:19
相关论文
共 16 条