Subvarieties of hypercomplex manifolds with holonomy in SL(n, H)

被引:7
作者
Soldatenkov, Andrey [1 ]
Verbitsky, Misha [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Lab Algebra Geometry, Moscow 117312, Russia
关键词
Hypercomplex manifold; Complex manifold; HKT-structure;
D O I
10.1016/j.geomphys.2012.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hypercoinplex manifold M is a manifold with a triple I. J. K of complex structure operators satisfying quaternionic relations. For each quaternion L = aI + bJ + cK, L-2 = -1, L is also a complex structure operator on M. called an induced complex structure. We study compact complex subvarieties of (M. L), for L a generic induced complex structure. Under additional assumptions (Obata holonomy contained in SL(n, H), the existence of an HKT-metric), we prove that (M. L) contains no divisors, and all complex subvarieties of codimension 2 are trianalytic (that is, also hypercomplex). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2234 / 2240
页数:7
相关论文
共 30 条
[1]  
Alesker Semyon, ARXIV08024202, P32
[2]  
[Anonymous], 1954, Amer. J. Math., DOI [10.2307/2372397, 10.2307/23723, DOI 10.2307/23723]
[3]   Potentials for hyper-Kahler metrics with torsion [J].
Banos, B ;
Swann, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (13) :3127-3135
[4]  
Barberis Maria L., ARXIV07123863, P22
[5]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[6]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[7]   A NOTE ON HYPERHERMITIAN 4-MANIFOLDS [J].
BOYER, CP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :157-164
[8]   Yang-Mills fields on quaternionic spaces [J].
Capria, M. Mamone ;
Salamon, S. M. .
NONLINEARITY, 1988, 1 (04) :517-530
[9]   Properties of manifolds with skew-symmetric torsion and special holonomy [J].
Fino, A ;
Grantcharov, G .
ADVANCES IN MATHEMATICS, 2004, 189 (02) :439-450
[10]   TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NON-LINEAR SIGMA-MODELS [J].
GATES, SJ ;
HULL, CM ;
ROCEK, M .
NUCLEAR PHYSICS B, 1984, 248 (01) :157-186