Mott-Hubbard transition and antiferromagnetism on the honeycomb lattice

被引:64
|
作者
Martelo, LM [1 ]
Dzierzawa, M [1 ]
Siffert, L [1 ]
Baeriswyl, D [1 ]
机构
[1] UNIV FRIBOURG, INST PHYS THEOR, CH-1700 FRIBOURG, SWITZERLAND
来源
关键词
D O I
10.1007/s002570050384
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Hubbard model is investigated for a half-filled honeycomb lattice, using a variational method. Two trial wave functions are introduced, the Gutzwiller wave function, well suited for describing the ''metallic'' phase at small Ti and a complementary wave function for the insulating regime at large values of U. The comparison of the two variational ground states at the mean-field level yields a Mott transition at U-c/t approximate to 5.3. In addition, a variational Monte Carlo calculation is performed in order to locate the instability of the ''metallic'' wave function with respect to antiferromagnetism. The critical value U-m/t approximate to 3.7 obtained in this way is considered to be a lower bound for the true critical point for antiferromagnetism, whereas there are good arguments that the mean-field value U-c/t approximate to 5.3 represents an upper bound for the Mott transition. Therefore the ''metal''-insulator transition for the honeycomb lattice may indeed be simultaneously driven by the antiferromagnetic instability and the Mott phenomenon.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 50 条
  • [21] Mott-Hubbard transition in the N-orbital Hubbard model
    Lundin, U
    Sandalov, I
    Johansson, B
    PHYSICA B, 2000, 281 (281): : 836 - 837
  • [22] Order parameter for the Mott-Hubbard transition in one dimension
    Strong, SP
    Talstra, JC
    PHYSICAL REVIEW B, 1999, 59 (11): : 7362 - 7366
  • [23] Mott-Hubbard transition of cold atoms in optical lattices
    Zwerger, W
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S9 - S16
  • [24] Fate of the false Mott-Hubbard transition in two dimensions
    Schaefer, T.
    Geles, F.
    Rost, D.
    Rohringer, G.
    Arrigoni, E.
    Held, K.
    Bluemer, N.
    Aichhorn, M.
    Toschi, A.
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [25] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS .2.
    ROZENBERG, MJ
    KOTLIAR, G
    ZHANG, XY
    PHYSICAL REVIEW B, 1994, 49 (15): : 10181 - 10193
  • [26] Transition characteristics of a Mott-Hubbard system in large dimensions
    Hong, J
    Kim, TS
    PHYSICAL REVIEW B, 2000, 62 (19): : 12581 - 12584
  • [27] Effect of nonlocal charge correlations on the Mott-Hubbard transition
    Minh-Tien, T
    EUROPHYSICS LETTERS, 1999, 47 (05): : 582 - 587
  • [28] MASS ENHANCEMENT AND MAGNETIC ORDER AT THE MOTT-HUBBARD TRANSITION
    CARTER, SA
    ROSENBAUM, TF
    METCALF, P
    HONIG, JM
    SPALEK, J
    PHYSICAL REVIEW B, 1993, 48 (22): : 16841 - 16844
  • [29] Suppression of topological Mott-Hubbard phases by multiple charge orders in the honeycomb extended Hubbard model
    Bijelic, Mario
    Kaneko, Ryui
    Gros, Claudius
    Valenti, Roser
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [30] Semimetal-Mott insulator quantum phase transition of the Hubbard model on the honeycomb lattice
    Ostmeyer, Johann
    Berkowitz, Evan
    Krieg, Stefan
    Laehde, Timo A.
    Luu, Thomas
    Urbach, Carsten
    PHYSICAL REVIEW B, 2020, 102 (24)