Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems
被引:84
作者:
论文数: 引用数:
h-index:
机构:
Benedetto, M. F.
[1
]
Berrone, S.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Buenos Aires, CONICET, INTECIN, Fac Ingn, Buenos Aires, DF, Argentina
Berrone, S.
[2
]
Borio, A.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Buenos Aires, CONICET, INTECIN, Fac Ingn, Buenos Aires, DF, Argentina
Borio, A.
[2
]
Pieraccini, S.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Buenos Aires, CONICET, INTECIN, Fac Ingn, Buenos Aires, DF, Argentina
Pieraccini, S.
[2
]
Scialo, S.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Buenos Aires, CONICET, INTECIN, Fac Ingn, Buenos Aires, DF, Argentina
Scialo, S.
[2
]
机构:
[1] Univ Buenos Aires, CONICET, INTECIN, Fac Ingn, Buenos Aires, DF, Argentina
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
In the framework of the discretization of advection diffusion problems by means of the Virtual Element Method, we consider stabilization issues. Herein, stabilization is pursued by adding a consistent SUPG-like term. For this approach we prove optimal rates of convergence. Numerical results clearly show the stabilizing effect of the method up to very large Peclet numbers and are in very good agreement with the expected rate of convergence. (C) 2016 Elsevier B.V. All rights reserved.