Mastering hysteresis in magnetocaloric materials

被引:287
作者
Gutfleisch, O. [1 ]
Gottschall, T. [1 ]
Fries, M. [1 ]
Benke, D. [1 ]
Radulov, I. [1 ]
Skokov, K. P. [1 ]
Wende, H. [2 ]
Gruner, M. [2 ]
Acet, M. [2 ]
Entel, P. [2 ]
Farle, M. [2 ]
机构
[1] Tech Univ Darmstadt, Mat Wissensch, Alarich Weiss Str 16, D-64287 Darmstadt, Germany
[2] Univ Duisburg Essen, Fak Phys, Geibelstr 41, D-47057 Duisburg, Germany
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2016年 / 374卷 / 2074期
基金
欧盟第七框架计划;
关键词
hysteresis; magnetocalorics; magnetostructural transition; MAGNETIC REFRIGERANTS; 1ST-ORDER TRANSITION; THERMAL-CONDUCTIVITY; ALLOYS; HYDRIDES; CO; LA(FEXSI1-X)(13); COMPOSITES; LA(FE; STATE;
D O I
10.1098/rsta.2015.0308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratoryscale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler-and Fe2P-type compounds. This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.
引用
收藏
页数:21
相关论文
共 102 条
[1]   Anomalously high entropy change in FeRh alloy [J].
Annaorazov, MP ;
Nikitin, SA ;
Tyurin, AL ;
Asatryan, KA ;
Dovletov, AK .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) :1689-1695
[2]   Design improvements of a permanent magnet active magnetic refrigerator [J].
Arnold, D. S. ;
Tura, A. ;
Ruebsaat-Trott, A. ;
Rowe, A. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 37 :99-105
[3]   Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn-Fe-P-Si magnetocaloric compounds prepared by different synthesis routes [J].
Bartok, A. ;
Kustov, M. ;
Cohen, L. F. ;
Pasko, A. ;
Zehani, K. ;
Bessais, L. ;
Mazaleyrat, F. ;
LoBue, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 400 :333-338
[4]   SPECIFIC-HEAT OF THE FERROMAGNET FE2P [J].
BECKMAN, O ;
LUNDGREN, L ;
NORDBLAD, P ;
SVEDLINDH, P ;
TORNE, A ;
ANDERSSON, Y ;
RUNDQVIST, S .
PHYSICA SCRIPTA, 1982, 25 (06) :679-681
[5]   Comparison of adjustable permanent magnetic field sources [J].
Bjork, R. ;
Bahl, C. R. H. ;
Smith, A. ;
Pryds, N. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (22) :3664-3671
[6]   MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE [J].
BROWN, GV .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) :3673-3680
[7]   Magnetocaloric effects in MnFeP1-xAsx-based compounds [J].
Brück, E ;
Ilyn, M ;
Tishin, AM ;
Tegus, O .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 :8-13
[8]  
Brück E, 2008, HBK MAGN MAT, V17, P235, DOI 10.1016/S1567-2719(07)17004-9
[9]   Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions [J].
Chirkova, A. ;
Skokov, K. P. ;
Schultz, L. ;
Baranov, N. V. ;
Gutfleisch, O. ;
Woodcock, T. G. .
ACTA MATERIALIA, 2016, 106 :15-21
[10]  
Coey J M. D., 2010, Magnetism and Magnetic Materials, P464, DOI DOI 10.1017/CBO9780511845000