A study of Feynman integrals with uniform transcendental weights and their symbology

被引:11
|
作者
He, Song [1 ,2 ,3 ,5 ]
Li, Zhenjie [1 ,6 ]
Ma, Rourou [4 ,5 ]
Wu, Zihao [4 ,5 ]
Yang, Qinglin [1 ,6 ]
Zhang, Yang [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[2] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[3] UCAS, ICTP AP, Hangzhou 310024, Peoples R China
[4] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[5] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
[6] Univ Chinese Acad Sci, Sch Phys Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Supersymmetric Gauge Theory; Scattering Amplitudes; DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; CANONICAL BASIS; DIAGRAMS; EPSILON; TOOL;
D O I
10.1007/JHEP10(2022)165
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Multi-loop Feynman integrals are key objects for the high-order correction computations in high energy phenomenology. These integrals with multiple scales may have complicated symbol structures, and we show that twistor geometries of closely related dual conformal integrals shed light on their alphabet and symbol structures. In this paper, first, as a cutting-edge example, we derive the two-loop four-external-mass Feynman integrals with uniform transcendental (UT) weights, based on the latest developments on UT integrals. Then we find that all the symbol letters of these integrals can be explained non-trivially by studying the so-called Schubert problem of certain dual conformal integrals with a point at infinity. Certain properties of the symbol such as first two entries and extended Steinmann relations are also studied from analogous properties of dual conformal integrals.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] A study of Feynman integrals with uniform transcendental weights and their symbology
    Song He
    Zhenjie Li
    Rourou Ma
    Zihao Wu
    Qinglin Yang
    Yang Zhang
    Journal of High Energy Physics, 2022
  • [2] Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight
    Dlapa, Christoph
    Li, Xiaodi
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [3] On symbology and differential equations of Feynman integrals from Schubert analysis
    He, Song
    Jiang, Xuhang
    Liu, Jiahao
    Yang, Qinglin
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [4] Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight
    Christoph Dlapa
    Xiaodi Li
    Yang Zhang
    Journal of High Energy Physics, 2021
  • [5] A first look at the function space for planar two-loop six-particle Feynman integrals
    Henn, Johannes
    Peraro, Tiziano
    Xu, Yingxuan
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (03):
  • [6] A first look at the function space for planar two-loop six-particle Feynman integrals
    Henn, Johannes
    Peraro, Tiziano
    Xu, Yingxuan
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [7] All orders structure and efficient computation of linearly reducible elliptic Feynman integrals
    Hidding, Martijn
    Moriello, Francesco
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [8] Deriving canonical differential equations for Feynman integrals from a single uniform weight integral
    Dlapa, Christoph
    Henn, Johannes
    Yan, Kai
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [9] Integration-by-parts identities and differential equations for parametrised Feynman integrals
    Artico, Daniele
    Magnea, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [10] Feynman integrals and iterated integrals of modular forms
    Adams, Luise
    Weinzierl, Stefan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) : 193 - 251