Some properties of Coulomb energy space

被引:3
作者
Genev, Hristo [1 ]
Venkov, George [1 ]
机构
[1] Tech Univ Sofia, Fac Appl Math & Informat, Sofia, Bulgaria
来源
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12) | 2012年 / 1497卷
关键词
generalized Coulomb energy; strict and uniform convexity; completeness; UNIQUENESS; MINIMIZERS; SYMMETRY;
D O I
10.1063/1.4766796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we define the Coulomb energy space and study its fundamental properties as a function space.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 1956, Ark. Mat, DOI 10.1007/BF02589410
[2]   SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS [J].
BALL, K ;
CARLEN, EA ;
LIEB, EH .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :463-482
[3]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[4]   Uniqueness and symmetry of minimizers to repulsive nonlocal functionals [J].
Genev, Hristo ;
Venkov, George .
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
[5]   Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential [J].
Georgiev, Vladimir ;
Venkov, George .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (02) :420-438
[6]  
Lieb E. H., 1996, GRADUATE STUDIES MAT, V14
[7]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194
[8]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[9]  
Lions P.L, 1987, NONLINEAR ANAL TMA, V5, P33