Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: Zinc vacancy energetics

被引:17
作者
Azarov, Alexander [1 ]
Venkatachalapathy, Vishnukanthan [1 ]
Mei, Zengxia [2 ]
Liu, Lishu [2 ]
Du, Xiaolong [2 ]
Galeckas, Augustinas [1 ]
Monakhov, Edouard [1 ]
Svensson, Bengt G. [1 ]
Kuznetsov, Andrej [1 ]
机构
[1] Univ Oslo, Ctr Mat Sci & Nanotechnol, Dept Phys, POB 1048 Blindern, N-0316 Oslo, Norway
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
DEFECT STRUCTURE; OXIDE;
D O I
10.1103/PhysRevB.94.195208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is well established that formation energies of point defects depend on the chemical potential (mu) and Fermi level position (E-F), which is widely used when modeling diffusion phenomena in semiconductors. In return, Arrhenius analysis of self-diffusion can be exploited for the investigation of point defect energetics since self-diffusion is mediated by intrinsic point defects. Specifically, the energetics of Zn vacancies (V-Zn) and/or Zn interstitials in ZnO can be potentially revealed via Zn self-diffusion measurements. In this study we have measured Zn self-diffusion varying mu (by shifting from Zn-to O-rich conditions during the sample synthesis) and E-F (by Ga, F, and Cu in situ doping). Corresponding diffusion activation energies were deduced and are discussed in terms of the vacancy diffusion mechanism. This results in an upper limit estimate for the V-Zn migration energy of similar to 1.5 eV, and prominent trends for the V-Zn formation energy as a function of mu and E-F are revealed. Concurrently, it is argued that dopant-V-Zn clustering and E-F pinning at deep donor traps should be taken into account when generalizing the interpretation of diffusion data for impurities in ZnO.
引用
收藏
页数:6
相关论文
共 35 条
[1]   Electrical characterization of 1.8 MeV proton-bombarded ZnO [J].
Auret, FD ;
Goodman, SA ;
Hayes, M ;
Legodi, MJ ;
van Laarhoven, HA ;
Look, DC .
APPLIED PHYSICS LETTERS, 2001, 79 (19) :3074-3076
[2]   Doping Asymmetry Problem in ZnO: Current Status and Outlook [J].
Avrutin, Vitaliy ;
Silversmith, Donald J. ;
Morkoc, Hadis .
PROCEEDINGS OF THE IEEE, 2010, 98 (07) :1269-1280
[3]   Large disparity between gallium and antimony self-diffusion in gallium antimonide [J].
Bracht, H ;
Nicols, SP ;
Walukiewicz, W ;
Silveira, JP ;
Briones, F ;
Haller, EE .
NATURE, 2000, 408 (6808) :69-72
[4]   Electronic properties of E3 electron trap in n-type ZnO [J].
Chicot, Gauthier ;
Pernot, Julien ;
Santailler, Jean-Louis ;
Chevalier, Celine ;
Granier, Carole ;
Ferret, Pierre ;
Ribeaud, Alexandre ;
Feuillet, Guy ;
Muret, Pierre .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (01) :206-210
[5]   Impurity complexes and conductivity of Ga-doped ZnO [J].
Demchenko, D. O. ;
Earles, B. ;
Liu, H. Y. ;
Avrutin, V. ;
Izyumskaya, N. ;
Ozgur, U. ;
Morkoc, H. .
PHYSICAL REVIEW B, 2011, 84 (07)
[6]   Diffusion of zinc vacancies and interstitials in zinc oxide [J].
Erhart, Paul ;
Albe, Karsten .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[7]   QUANTITATIVE MODEL FOR DIFFUSION OF PHOSPHORUS IN SILICON AND EMITTER DIP EFFECT [J].
FAIR, RB ;
TSAI, JCC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (07) :1107-1118
[8]   Energetically deep defect centers in vapor-phase grown zinc oxide [J].
Frank, T. ;
Pensl, G. ;
Tena-Zaera, R. ;
Zuniga-Perez, J. ;
Martinez-Tomas, C. ;
Munoz-Sanjose, V. ;
Ohshima, T. ;
Itoh, H. ;
Hofmann, D. ;
Pfisterer, D. ;
Sann, J. ;
Meyer, B. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 88 (01) :141-145
[9]   Photocurrent spectroscopy of deep levels in ZnO thin films [J].
Frenzel, H. ;
von Wenckstern, H. ;
Weber, A. ;
Schmidt, H. ;
Biehne, G. ;
Hochmuth, H. ;
Lorenz, M. ;
Grundmann, M. .
PHYSICAL REVIEW B, 2007, 76 (03)
[10]   The E3 center in zinc oxide: Evidence for involvement of hydrogen [J].
Hupfer, A. ;
Bhoodoo, C. ;
Vines, L. ;
Svensson, B. G. .
APPLIED PHYSICS LETTERS, 2014, 104 (09)