SiamFF: Visual Tracking With a Siamese Network Combining Information Fusion With Rectangular Window Filtering

被引:4
作者
Luo, Yuan [1 ]
Cai, Yuanxiao [1 ]
Wang, Boyu [1 ]
Wang, Jie [1 ]
Wang, Yanjie [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Optoelect Informat Sensing & Technol, Chongqing 400065, Peoples R China
[2] Zhejiang Univ Finance & Econ, Coll Data Sci, Hangzhou 310000, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Deep learning; visual tracking; Siamese network; multilevel fusion; rectangular window filtering; OBJECT TRACKING;
D O I
10.1109/ACCESS.2020.3004992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, Siamese trackers have shown excellent performance in both accuracy and speed. However, traditional trackers have poor robustness against similar objects due to the use of single deep features and the limitation of cosine windows. In this paper, a novel Siamese network combining information fusion with rectangular window filtering named SiamFF is introduced. First, a multilevel fusion network is proposed. At feature-level, the shallow and deep features of the network are fused through a layer-hopping connection to obtain complementary feature maps. Then, the score maps generated by the complementary feature maps are further fused at the score-level to improve the robustness. In addition, based on the continuity and stationarity of objects movement in reality, a score map filtering strategy is proposed. The relative displacement of the target can be predicted by obtaining the interframe information, and the moving direction is applied to filter the score map to further eliminate the analog interference. Experimental results on OTB2015 and VOT2016 benchmarks indicate that SiamFF performs favorably against many state-of-the-art trackers in terms of accuracy while maintaining real-time tracking speed.
引用
收藏
页码:119899 / 119910
页数:12
相关论文
共 19 条
[1]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[2]  
Danelljan M., 2014, BRIT MACH VIS C, P1108
[3]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318
[4]  
Gao P, 2019, IEEE IMAGE PROC, P3078, DOI [10.1109/icip.2019.8803285, 10.1109/ICIP.2019.8803285]
[5]   Learning to Track at 100 FPS with Deep Regression Networks [J].
Held, David ;
Thrun, Sebastian ;
Savarese, Silvio .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :749-765
[6]   High-Speed Tracking with Kernelized Correlation Filters [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :583-596
[7]  
Jung C., 2018, P 25 IEEE INT C IM P, P850
[8]   T-CNN: Tubelets With Convolutional Neural Networks for Object Detection From Videos [J].
Kang, Kai ;
Li, Hongsheng ;
Yan, Junjie ;
Zeng, Xingyu ;
Yang, Bin ;
Xiao, Tong ;
Zhang, Cong ;
Wang, Zhe ;
Wang, Ruohui ;
Wang, Xiaogang ;
Ouyang, Wanli .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) :2896-2907
[9]   The Visual Object Tracking VOT2016 Challenge Results [J].
Kristan, Matej ;
Leonardis, Ales ;
Matas, Jiri ;
Felsberg, Michael ;
Pflugfelder, Roman ;
Cehovin, Luka ;
Vojir, Tomas ;
Hager, Gustav ;
Lukezic, Alan ;
Fernandez, Gustavo ;
Gupta, Abhinav ;
Petrosino, Alfredo ;
Memarmoghadam, Alireza ;
Garcia-Martin, Alvaro ;
Montero, Andres Solis ;
Vedaldi, Andrea ;
Robinson, Andreas ;
Ma, Andy J. ;
Varfolomieiev, Anton ;
Alatan, Aydin ;
Erdem, Aykut ;
Ghanem, Bernard ;
Liu, Bin ;
Han, Bohyung ;
Martinez, Brais ;
Chang, Chang-Ming ;
Xu, Changsheng ;
Sun, Chong ;
Kim, Daijin ;
Chen, Dapeng ;
Du, Dawei ;
Mishra, Deepak ;
Yeung, Dit-Yan ;
Gundogdu, Erhan ;
Erdem, Erkut ;
Khan, Fahad ;
Porikli, Fatih ;
Zhao, Fei ;
Bunyak, Filiz ;
Battistone, Francesco ;
Zhu, Gao ;
Roffo, Giorgio ;
Subrahmanyam, Gorthi R. K. Sai ;
Bastos, Guilherme ;
Seetharaman, Guna ;
Medeiros, Henry ;
Li, Hongdong ;
Qi, Honggang ;
Bischof, Horst ;
Possegger, Horst .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :777-823
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90