A palette of site-specific organelle fluorescent thermometers

被引:17
作者
Liu, Xiao [1 ,2 ]
Yamazaki, Takeru [3 ]
Kwon, Haw-Young [1 ]
Arai, Satoshi [3 ]
Chang, Young-Tae [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Self Assembly & Complex, Pohang 37673, Gyeongbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Chem, Pohang 37673, Gyeongbuk, South Korea
[3] Kanazawa Univ, WPI Nano Life Sci Inst, Kanazawa 9201192, Japan
关键词
Fluorescence; Temperature; Molecular rotor; Organelle; Thermometers; BROWN ADIPOSE-TISSUE; TEMPERATURE; MITOCHONDRIA; PROBES; ADIPOCYTES; METABOLISM; STANDARDS;
D O I
10.1016/j.mtbio.2022.100405
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Intracellular micro-temperature is closely related to cellular processes. Such local temperature inside cells can be measured by fluorescent thermometers, which are a series of fluorescent materials that convert the temperature information to detectable fluorescence signals. To investigate the intracellular temperature fluctuation in various organelles, it is essential to develop site-specific organelle thermometers. In this study, we develop a new series of fluorescent thermometers, Thermo Greens (TGs), to visualize the temperature change in almost all typical organelles. Through fluorescence lifetime-based cell imaging, it was proven that TGs allow the organelle-specific monitoring of temperature gradients created by external heating. The fluorescence lifetime-based thermometry shows that each organelle experiences a distinct temperature increment which depends on the distance away from the heat source. TGs are further demonstrated in the quantitative imaging of heat production at different organelles such as mitochondria and endoplasmic reticulum in brown adipocytes. To date, TGs are the first palette batch of small molecular fluorescent thermometers that can cover almost all typical organelles. These findings can inspire the development of new fluorescent thermometers and enhance the understanding of thermal biology in the future.
引用
收藏
页数:8
相关论文
共 55 条
  • [31] Molecular Mechanism of Viscosity Sensitivity in BODIPY Rotors and Application to Motion-Based Fluorescent Sensors
    Liu, Xiao
    Chi, Weijie
    Qiao, Qinglong
    Kokate, Siddhant, V
    Cabrera, Eduardo Pena
    Xu, Zhaochao
    Liu, Xiaogang
    Chang, Young-Tae
    [J]. ACS SENSORS, 2020, 5 (03) : 731 - 739
  • [32] SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy
    Lukinavicius, Grazvydas
    Blaukopf, Claudia
    Pershagen, Elias
    Schena, Alberto
    Reymond, Luc
    Derivery, Emmanuel
    Gonzalez-Gaitan, Marcos
    D'Este, Elisa
    Hell, Stefan W.
    Gerlich, Daniel Wolfram
    Johnsson, Kai
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [33] Magde D, 2002, PHOTOCHEM PHOTOBIOL, V75, P327, DOI 10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO
  • [34] 2
  • [35] MICROCALORIMETRY OF ISOLATED MAMMALIAN-CELLS
    NEDERGAARD, J
    CANNON, B
    LINDBERG, O
    [J]. NATURE, 1977, 267 (5611) : 518 - 520
  • [36] Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
    Okabe, Kohki
    Inada, Noriko
    Gota, Chie
    Harada, Yoshie
    Funatsu, Takashi
    Uchiyama, Seiichi
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [37] Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: Effects of cholesterol depletion and apoptosis
    Oncul, Sule
    Klymchenko, Andrey S.
    Kucherak, Oleksandr A.
    Demchenko, Alexander P.
    Martin, Sophie
    Dontenwill, Monique
    Arntz, Youri
    Didier, Pascal
    Duportail, Guy
    Mely, Yves
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (07): : 1436 - 1443
  • [38] Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells
    Oyama, Kotaro
    Takabayashi, Masao
    Takei, Yoshiaki
    Arai, Satoshi
    Takeoka, Shinji
    Ishiwata, Shin'ichi
    Suzuki, Madoka
    [J]. LAB ON A CHIP, 2012, 12 (09) : 1591 - 1593
  • [39] Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range
    Peng, Hongshang
    Stich, Matthias I. J.
    Yu, Jiangbo
    Sun, Li-ning
    Fischer, Lorenz H.
    Wolfbeis, Otto S.
    [J]. ADVANCED MATERIALS, 2010, 22 (06) : 716 - +
  • [40] Improved Characterization of Raft-Mimicking Phase-Separation Phenomena in Lipid Bilayers Using Laurdan Fluorescence with Log-Normal Multipeak Analysis
    Puff, Nicolas
    Staneva, Galya
    Angelova, Miglena, I
    Seigneuret, Michel
    [J]. LANGMUIR, 2020, 36 (16) : 4347 - 4356