Multiobjective evolutionary algorithms for multivariable PI controller design

被引:37
作者
Reynoso-Meza, Gilberto [1 ]
Sanchis, Javier [1 ]
Blasco, Xavier [1 ]
Herrero, Juan M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Grp Control Predictivo & Optimizac Heurist CPOH, Valencia 46022, Spain
关键词
Multiobjective optimisation; Controller tuning; PID tuning; Multiobjective evolutionary optimisation; Decision making; DIFFERENTIAL EVOLUTION; PARETO FRONT; OPTIMIZATION; ROBUST;
D O I
10.1016/j.eswa.2012.01.111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7895 / 7907
页数:13
相关论文
共 50 条
  • [41] An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator and Its Application
    Fan, Qinqin
    Zhang, Yilian
    Li, Ning
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2422 - 2436
  • [42] Solving a multiobjective professional timetabling problem using evolutionary algorithms at Mandarine Academy
    Hafsa, Mounir
    Wattebled, Pamela
    Jacques, Julie
    Jourdan, Laetitia
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2025, 32 (01) : 244 - 269
  • [43] Chaos-assisted multiobjective evolutionary algorithm to the design of transformer
    Tamilselvi, S.
    Baskar, S.
    Anandapadmanaban, L.
    Kadhar, K. Mohaideen Abdul
    Varshini, P. R.
    SOFT COMPUTING, 2017, 21 (19) : 5675 - 5692
  • [44] Multiobjective optimisation approach to robust controller design
    Griffin, I
    Schroder, P
    Chipperfield, A
    Fleming, P
    NEW TECHNOLOGIES FOR COMPUTER CONTROL 2001, 2002, : 123 - 128
  • [45] Partial-retuning of decentralised PI Controller of nonlinear multivariable process using Firefly algorithm
    Rangasamy, Kotteeswaran
    Sivakumar, Lingappan
    2013 INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTIONS (ICHCI), 2013,
  • [46] Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
    Sarjas, Andrej
    Svecko, Rajko
    Chowdhury, Amor
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [47] Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review
    Metaxiotis, K.
    Liagkouras, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (14) : 11685 - 11698
  • [48] Pareto-based continuous evolutionary algorithms for multiobjective optimization
    Shim, MB
    Suh, MW
    Furukawa, T
    Yagawa, G
    Yoshimura, S
    ENGINEERING COMPUTATIONS, 2002, 19 (1-2) : 22 - 48
  • [49] Performance Comparison of Evolutionary Algorithms for Airfoil Design
    Randall, Marcus
    Rawlins, Tim
    Lewis, Andrew
    Kipouros, Timoleon
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2267 - 2276
  • [50] Evolutionary Algorithms for Design of Virtual Private Networks
    Kotenko, Igor
    Saenko, Igor
    INTELLIGENT DISTRIBUTED COMPUTING XII, 2018, 798 : 287 - 297