Multiobjective evolutionary algorithms for multivariable PI controller design

被引:37
作者
Reynoso-Meza, Gilberto [1 ]
Sanchis, Javier [1 ]
Blasco, Xavier [1 ]
Herrero, Juan M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Grp Control Predictivo & Optimizac Heurist CPOH, Valencia 46022, Spain
关键词
Multiobjective optimisation; Controller tuning; PID tuning; Multiobjective evolutionary optimisation; Decision making; DIFFERENTIAL EVOLUTION; PARETO FRONT; OPTIMIZATION; ROBUST;
D O I
10.1016/j.eswa.2012.01.111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7895 / 7907
页数:13
相关论文
共 50 条
  • [31] Decoupled fuzzy PI controller tuning scheme for multivariable processes
    Harianth, Eranda
    Mann, George K.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 2040 - +
  • [32] Interactive Incorporation of User Preferences in Multiobjective Evolutionary Algorithms
    Krettek, Johannes
    Braun, Jan
    Hoffmann, Frank
    Bertram, Torsten
    APPLICATIONS OF SOFT COMPUTING: FROM THEORY TO PRAXIS, 2009, 58 : 379 - 388
  • [33] Multiobjective sparse ensemble learning by means of evolutionary algorithms
    Zhao, Jiaqi
    Jiao, Licheng
    Xia, Shixiong
    Fernandes, Vitor Basto
    Yevseyeva, Iryna
    Zhou, Yong
    Emmerich, Michael T. M.
    DECISION SUPPORT SYSTEMS, 2018, 111 : 86 - 100
  • [34] A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Li, Jianqiang
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1941 - 1961
  • [35] Hybrid evolutionary algorithms for the Multiobjective Traveling Salesman Problem
    Psychas, Iraklis-Dimitrios
    Delimpasi, Eleni
    Marinakis, Yannis
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) : 8956 - 8970
  • [36] An Ensemble Method for Performance Metrics in Multiobjective Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1724 - 1729
  • [37] Multiobjective evolutionary algorithms based on target region preferences
    Li, Longmei
    Wang, Yali
    Trautmann, Heike
    Jing, Ning
    Emmerich, Michael
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 196 - 215
  • [38] Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms
    Shir, Ofer M.
    Preuss, Mike
    Naujoks, Boris
    Emmerich, Michael
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 95 - +
  • [39] A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation
    Karahan, Ibrahim
    Koeksalan, Murat
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) : 636 - 664
  • [40] Noise-Tolerant Techniques for Decomposition-Based Multiobjective Evolutionary Algorithms
    Li, Juan
    Xin, Bin
    Chen, Jie
    Pardalos, Panos M.
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2274 - 2287