Multiobjective evolutionary algorithms for multivariable PI controller design

被引:37
作者
Reynoso-Meza, Gilberto [1 ]
Sanchis, Javier [1 ]
Blasco, Xavier [1 ]
Herrero, Juan M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Grp Control Predictivo & Optimizac Heurist CPOH, Valencia 46022, Spain
关键词
Multiobjective optimisation; Controller tuning; PID tuning; Multiobjective evolutionary optimisation; Decision making; DIFFERENTIAL EVOLUTION; PARETO FRONT; OPTIMIZATION; ROBUST;
D O I
10.1016/j.eswa.2012.01.111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7895 / 7907
页数:13
相关论文
共 50 条
  • [21] A diversity preserving selection in multiobjective evolutionary algorithms
    Ahn, Chang Wook
    Ramakrishna, R. S.
    APPLIED INTELLIGENCE, 2010, 32 (03) : 231 - 248
  • [22] A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition
    Trivedi, Anupam
    Srinivasan, Dipti
    Sanyal, Krishnendu
    Ghosh, Abhiroop
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (03) : 440 - 462
  • [23] A survey of decomposition approaches in multiobjective evolutionary algorithms
    Wang, Jia
    Su, Yuchao
    Lin, Qiuzhen
    Ma, Lijia
    Gong, Dunwei
    Li, Jianqiang
    Ming, Zhong
    NEUROCOMPUTING, 2020, 408 (408) : 308 - 330
  • [24] Controller Design for Nonlinear Multivariable Systems
    Nassirharand, Amir
    Teh, Sze Hong
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2995 - 2999
  • [25] Robust Design of Noise Attenuation Barriers with Evolutionary Multiobjective Algorithms and the Boundary Element Method
    Greiner, David
    Galvan, Bias
    Aznarez, Juan J.
    Maeso, Orlando
    Winter, Gabriel
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 261 - 274
  • [26] Tuning a digital multivariable controller for a lab-scale helicopter system via simulated annealing and evolutionary algorithms
    Moness, Mohammed
    Moustafa, Ahmed M.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2015, 37 (10) : 1254 - 1273
  • [27] Efficient Sampling of PI Controllers in Evolutionary Multiobjective Optimization
    Reynoso-Meza, Gilberto
    Santos Coelho, Leandro D.
    Freire, Roberto Z.
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1263 - 1270
  • [28] PREDCON: A package for multiobjective controller design
    Rykov, AS
    Vinogradova, II
    Kuznetsov, AG
    NEW TRENDS IN DESIGN OF CONTROL SYSTEMS 1997, 1998, : 55 - 59
  • [30] Evolutionary Multiobjective Clustering Algorithms With Ensemble for Patient Stratification
    Wang, Yunhe
    Li, Xiangtao
    Wong, Ka-Chun
    Chang, Yi
    Yang, Shengxiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 11027 - 11040