Multiobjective evolutionary algorithms for multivariable PI controller design

被引:37
作者
Reynoso-Meza, Gilberto [1 ]
Sanchis, Javier [1 ]
Blasco, Xavier [1 ]
Herrero, Juan M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Grp Control Predictivo & Optimizac Heurist CPOH, Valencia 46022, Spain
关键词
Multiobjective optimisation; Controller tuning; PID tuning; Multiobjective evolutionary optimisation; Decision making; DIFFERENTIAL EVOLUTION; PARETO FRONT; OPTIMIZATION; ROBUST;
D O I
10.1016/j.eswa.2012.01.111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7895 / 7907
页数:13
相关论文
共 50 条
  • [1] Evolutionary algorithms based design of multivariable PID controller
    Iruthayarajan, M. Willjuice
    Baskar, S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (05) : 9159 - 9167
  • [2] Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    Freire, Roberto Z.
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 51 : 120 - 133
  • [3] Design of PI Controller: A Multiobjective Optimization Approach
    Kumar, Lalitesh
    Kumar, Prawendra
    Ghosh, Subhojit
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 833 - 838
  • [4] Evolutionary design of marginally robust multivariable PID controller
    Javadian, Arman
    Nariman-zadeh, Nader
    Jamali, Ali
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [5] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [6] Diversity Controlled Self Adaptive Differential Evolution based design of non-fragile multivariable PI controller
    Kadhar, K. Mohaideen Abdul
    Baskar, S.
    Amali, S. Miruna Joe
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 46 : 209 - 222
  • [7] A tool for multiobjective evolutionary algorithms
    Sag, Tahir
    Cunkas, Mehmet
    ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (09) : 902 - 912
  • [8] A Survey of Normalization Methods in Multiobjective Evolutionary Algorithms
    He, Linjun
    Ishibuchi, Hisao
    Trivedi, Anupam
    Wang, Handing
    Nan, Yang
    Srinivasan, Dipti
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (06) : 1028 - 1048
  • [9] On the optimum design of fuzzy logic controller for trajectory tracking using evolutionary algorithms
    Pishkenari, HN
    Mahboobi, SH
    Meghdari, A
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 660 - 665
  • [10] Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design
    Menhas, Muhammad Ilyas
    Wang, Ling
    Fei, Minrui
    Pan, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (04) : 4390 - 4401