On simultaneous on-line state and parameter estimation in non-linear state-space models

被引:50
|
作者
Tulsyan, Aditya [1 ]
Huang, Biao [1 ]
Gopaluni, R. Bhushan [2 ,3 ]
Forbes, J. Fraser [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
On-line estimation; Bayesian methods; Particle filters; Missing measurements; Stochastic non-linear systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1016/j.jprocont.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 526
页数:11
相关论文
共 50 条
  • [41] On Dynamic State-Space models for fatigue-induced structural degradation
    Corbetta, Matteo
    Sbarufatti, Claudio
    Manes, Andrea
    Giglio, Marco
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 61 : 202 - 219
  • [42] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [43] Realization of State-Space Models for Wave Propagation Simulations
    Stephen A. Ketcham
    Minh Q. Phan
    Richard S. Darling
    Mihan H. McKenna
    The Journal of the Astronautical Sciences, 2013, 60 : 607 - 622
  • [44] Realization of State-Space Models for Wave Propagation Simulations
    Ketcham, Stephen A.
    Phan, Minh Q.
    Darling, Richard S.
    McKenna, Mihan H.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2013, 60 (3-4) : 607 - 622
  • [45] Maximum—A Posteriori Estimation of Linear Time-Invariant State-Space Models via Efficient Monte-Carlo Sampling
    Mejari, Manas
    Piga, Dario
    ASME Letters in Dynamic Systems and Control, 2022, 2 (01):
  • [46] Forecasting multivariate time series with linear restrictions using constrained structural state-space models
    Pandher, GS
    JOURNAL OF FORECASTING, 2002, 21 (04) : 281 - 300
  • [47] Composite local-linear state-space models for the behavioral modeling off digital devices
    Stievano, I. S.
    Siviero, C.
    Canavero, F. G.
    Maio, I. A.
    2007 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, : 508 - +
  • [48] On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models
    Fleischer, Christian
    Waag, Wladislaw
    Heyn, Hans-Martin
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2014, 260 : 276 - 291
  • [49] A new state-space method for exponentially damped linear systems
    Wu, Xinhai
    He, Huan
    Chen, Guoping
    COMPUTERS & STRUCTURES, 2019, 212 : 137 - 144
  • [50] Structured Variational Bayesian Inference for Gaussian State-Space Models With Regime Switching
    Petetin, Yohan
    Janati, Yazid
    Desbouvries, Francois
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1953 - 1957