On simultaneous on-line state and parameter estimation in non-linear state-space models

被引:50
|
作者
Tulsyan, Aditya [1 ]
Huang, Biao [1 ]
Gopaluni, R. Bhushan [2 ,3 ]
Forbes, J. Fraser [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
On-line estimation; Bayesian methods; Particle filters; Missing measurements; Stochastic non-linear systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1016/j.jprocont.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 526
页数:11
相关论文
共 50 条
  • [1] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65
  • [2] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [3] Interval analysis for guaranteed non-linear parameter and state estimation
    Kieffer, M
    Walter, E
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 171 - 181
  • [4] Learning Stable and Robust Linear Parameter-Varying State-Space Models
    Verhoek, Chris
    Wang, Ruigang
    Toth, Roland
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1348 - 1353
  • [5] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Olsson, Jimmy
    Westerborn Alenlov, Johan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 545 - 576
  • [6] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Jimmy Olsson
    Johan Westerborn Alenlöv
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 545 - 576
  • [7] Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
    Cox, Benjamin
    Elvira, Victor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1922 - 1937
  • [8] Physical Parameter Estimation from State-Space Models for Systems with Missing Input Information
    Lus, Hilmi
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2012, 138 (12): : 1402 - 1410
  • [9] Sequential parameter learning and filtering in structured autoregressive state-space models
    Prado, Raquel
    Lopes, Hedibert F.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 43 - 57
  • [10] Linear robust control of identified state-space non-linear inverse compensated SI engine
    Petridis, AP
    Shenton, AT
    INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (03): : 255 - 270