PHASE TRANSITION OF THE DISSIPATIVE DOUBLE-WELL QUANTUM MECHANICS

被引:2
|
作者
Aoki, Ken-Ichi [1 ]
Kobayashi, Tamao [2 ]
机构
[1] Kanazawa Univ, Inst Theoret Phys, Fac Math & Phys, Kanazawa, Ishikawa, Japan
[2] Yonago Natl Coll Technol, Yonago, Tottori, Japan
来源
MODERN PHYSICS LETTERS B | 2012年 / 26卷 / 30期
关键词
Quantum dissipation; renormalization group; RENORMALIZATION-GROUP ANALYSIS; LONG-RANGE INTERACTIONS; POTTS-MODEL;
D O I
10.1142/S0217984912502028
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the critical dissipation of the double-well quantum mechanics. We adopt two-state approximation to define effective Ising models and apply the block decimation renormalization group and the finite range scaling method recently proposed for the long range Ising model. We briefly report the numerical results of the critical dissipation for various model parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
    Liu, Ji-Li
    Liang, Jiu-Qing
    CHINESE PHYSICS B, 2019, 28 (11)
  • [22] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
    刘吉利
    梁九卿
    Chinese Physics B, 2019, 28 (11) : 71 - 77
  • [23] DILUTE-BOUNCE-GAS APPROXIMATION IN THE DISSIPATIVE DOUBLE-WELL SYSTEM
    WOLLENSAK, M
    PHYSICAL REVIEW B, 1990, 41 (13): : 8912 - 8920
  • [24] Phase coherence in a driven double-well system
    Miyakawa, T
    Search, CP
    Meystre, P
    PHYSICAL REVIEW A, 2004, 70 (05): : 053622 - 1
  • [25] Simulated quantum annealing of double-well and multiwell potentials
    Inack, E. M.
    Pilati, S.
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [26] FUNCTIONAL INTEGRAL APPROACH TO QUANTUM DOUBLE-WELL OSCILLATOR
    WIECKO, C
    LOPEZ, A
    SOLID STATE COMMUNICATIONS, 1975, 17 (10) : 1237 - 1240
  • [27] QUANTUM RATE THEORY FOR A SYMMETRIC DOUBLE-WELL POTENTIAL
    WEINER, JH
    JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (05): : 2492 - 2506
  • [28] Quantum phases of bosons in double-well optical lattices
    Danshita, I.
    Williams, J. E.
    de Melo, C. A. R. Sa
    Clark, C. W.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [29] Quantum Information Processing With Double-Well Optical Lattices
    Lundblad, Nathan
    Porto, James V.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2444 - +
  • [30] A convergent iterative solution of the quantum double-well potential
    Friedberg, R
    Lee, TD
    Zhao, WQ
    Cimenser, A
    ANNALS OF PHYSICS, 2001, 294 (01) : 67 - 133