Hybrid Multi-objective Machine Learning Classification in Liver Transplantation

被引:0
作者
Perez-Ortiz, M. [1 ]
Cruz-Ramirez, M. [1 ]
Fernandez-Caballero, J. C. [1 ]
Hervas-Martinez, C. [1 ]
机构
[1] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I | 2012年 / 7208卷
关键词
multiobjective; evolutionary computation; neural networks; liver transplantation; differential evolution; ARTIFICIAL NEURAL-NETWORKS; DIFFERENTIAL EVOLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper constructs a hybrid, multi-objective and evolutionary algorithm based on Differential Evolutions using neural network models and q-Gaussian basis units in order to develop an efficient and complete system for donor-recipient assignment in liver transplantation. The algorithm is used for the classification of a binary dataset and will predict graft survival at 15 and 90 days after the transplantation. Other hybrid approaches combining artificial neural networks with evolutionary computation and well-known algorithms are presented in order to compare the obtained performance of both mono and multi-objective methods, using other methods such as Support Vector Machines and Discriminant Analysis. Some supervised attribute selection methods were previously applied, in order to extract the most discriminant variables in the problem presented. The models obtained allowed medical experts to predict survival rates and to come to a fair decision based on the principles of justice, efficiency and equity.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
  • [31] Multi-objective Optimization Using a Hybrid Differential Evolution Algorithm
    Wang, Xianpeng
    Tang, Lixin
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [32] A Novel Hybrid Particle Swarm Optimization for Multi-Objective Problems
    Jiang, Siwei
    Cai, Zhihua
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PROCEEDINGS, 2009, 5855 : 28 - 37
  • [33] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [34] A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing
    Rana, Nadim
    Abd Latiff, Muhammad Shafie
    Abdulhamid, Shafi'i Muhammad
    Misra, Sanjay
    ENGINEERING OPTIMIZATION, 2022, 54 (12) : 1999 - 2016
  • [35] Multi-objective Fuzzy Job-shop of Pharmaceutical Enterprise Scheduling Considering Uncertain and Multi-objective Features
    Zhong, Zufeng
    Yang, Hongyan
    Ye, Caihong
    Yang, Man
    EKOLOJI, 2019, 28 (107): : 2301 - 2311
  • [36] Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer
    Li, Chaoshun
    Wang, Wenxiao
    Chen, Deshu
    ENERGY, 2019, 171 : 241 - 255
  • [37] A hybrid approach for multi-weapon production planning with large-dimensional multi-objective in defense manufacturing
    Zhou, Yu
    Jiang, Jiang
    Yang, Zhen-yu
    Tan, Yue-jin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2014, 228 (02) : 302 - 316
  • [38] Text clustering with a hybrid multi-objective optimization approach: The multi-objective firefly differential Jaya Algorithm
    Naderi, Muhammad
    Amiri, Maryam
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [39] Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification
    Zhang, Yong
    Gong, Dun-wei
    Cheng, Jian
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (01) : 64 - 75
  • [40] A review on properties and multi-objective performance predictions of concrete based on machine learning models
    Ni, Bowen
    Rahman, Md Zillur
    Guo, Shuaicheng
    Zhu, Deju
    MATERIALS TODAY COMMUNICATIONS, 2025, 44