Exact matrix product states for quantum Hall wave functions

被引:93
作者
Zaletel, Michael P. [1 ]
Mong, Roger S. K. [2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
关键词
FRACTIONAL QUANTIZATION; SPACE APPROACH; FLUID;
D O I
10.1103/PhysRevB.86.245305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the model wave functions used to describe the fractional quantum Hall effect have exact representations as matrix product states (MPS). These MPS can be implemented numerically in the orbital basis of both finite and infinite cylinders, which provides an efficient way of calculating arbitrary observables. We extend this approach to the charged excitations and numerically compute their Berry phases. Finally, we present an algorithm for numerically computing the real-space entanglement spectrum starting from an arbitrary orbital basis MPS, which allows us to study the scaling properties of the real-space entanglement spectra on infinite cylinders. The real-space entanglement spectrum obeys a scaling form dictated by the edge conformal field theory, allowing us to accurately extract the two entanglement velocities of the Moore-Read state. In contrast, the orbital space spectrum is observed to scale according to a complex set of power laws that rule out a similar collapse. DOI: 10.1103/PhysRevB.86.245305
引用
收藏
页数:14
相关论文
共 69 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   Entanglement renormalization and topological order [J].
Aguado, Miguel ;
Vidal, Guifre .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[3]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[4]   EXTENDED HEISENBERG MODELS OF ANTIFERROMAGNETISM - ANALOGIES TO THE FRACTIONAL QUANTUM HALL-EFFECT [J].
AROVAS, DP ;
AUERBACH, A ;
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :531-534
[5]   Pfaffian quantum Hall state made simple: Multiple vacua and domain walls on a thin torus [J].
Bergholtz, E. J. ;
Kailasvuori, J. ;
Wikberg, E. ;
Hansson, T. H. ;
Karlhede, A. .
PHYSICAL REVIEW B, 2006, 74 (08)
[6]   Local Tensor Network for Strongly Correlated Projective States [J].
Beri, B. ;
Cooper, N. R. .
PHYSICAL REVIEW LETTERS, 2011, 106 (15)
[7]   Model fractional quantum Hall states and Jack polynomials [J].
Bernevig, B. Andrei ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[8]   Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states [J].
Bonderson, Parsa ;
Gurarie, Victor ;
Nayak, Chetan .
PHYSICAL REVIEW B, 2011, 83 (07)
[9]  
CARDY JL, 1986, NUCL PHYS B, V275, P200, DOI 10.1016/0550-3213(86)90596-1
[10]   Classification of gapped symmetric phases in one-dimensional spin systems [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2011, 83 (03)