KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION

被引:18
作者
Barbero-Linan, Maria [1 ,2 ]
de Leon, Manuel [2 ]
Martin de Diego, David [2 ]
Marrero, Juan C. [3 ]
Munoz-Lecanda, Miguel C. [4 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[2] Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid 28049, Spain
[3] Univ La Laguna, Fac Matemat, Dept Matemat Fundamental, Unidad Asociada ULL CSIC, Tenerife 38071, Canary Islands, Spain
[4] Dept Matemat Aplicada IV, Barcelona 08034, Spain
关键词
Skew-symmetric algebroids; Hamilton-Jacobi equation; mechanical control systems; decoupling vector fields; kinematic reduction; LIE ALGEBROIDS; LAGRANGIAN MECHANICS; SYSTEMS; INTEGRABILITY;
D O I
10.3934/jgm.2012.4.207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A close relationship between the classical Hamilton-Jacobi theory and the kinematic reduction of control systems by decoupling vector fields is shown in this paper. The geometric interpretation of this relationship relies on new mathematical techniques for mechanics de fined on a skew-symmetric algebroid. This geometric structure allows us to describe in a simplified way the mechanics of nonholonomic systems with both control and external forces.
引用
收藏
页码:207 / 237
页数:31
相关论文
共 25 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]   A unified framework for mechanics: Hamilton-Jacobi equation and applications [J].
Balseiro, P. ;
Marrero, J. C. ;
Martin de Diego, D. ;
Padron, E. .
NONLINEARITY, 2010, 23 (08) :1887-1918
[3]   STRICT ABNORMAL EXTREMALS IN NONHOLONOMIC AND KINEMATIC CONTROL SYSTEMS [J].
Barbero-Linan, Maria ;
Munoz-Lecanda, Miguel C. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (01) :1-17
[4]  
Bullo F., 2005, TEXTS APPL MATH
[5]   Geometric Hamilton-Jacobi theory [J].
Carinena, Jose F. ;
Gracia, Xavier ;
Marmo, Giuseppe ;
Martinez, Eduardo ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) :1417-1458
[6]   GEOMETRIC HAMILTON-JACOBI THEORY FOR NONHOLONOMIC DYNAMICAL SYSTEMS [J].
Carinena, Jose F. ;
Gracia, Xavier ;
Marmo, Giuseppe ;
Martinez, Eduardo ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (03) :431-454
[7]  
Cortes J., 2004, IMA Journal of Mathematical Control and Information, V21, P457, DOI 10.1093/imamci/21.4.457
[8]   A survey of Lagrangian Mechanics and control on Lie algebroids and groupoids [J].
Cortes, Jorge ;
De Leon, Manuel ;
Marrero, Juan C. ;
Martin De Diego, D. ;
Martinez, Eduardo .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) :509-558
[9]   NONHOLONOMIC LAGRANGIAN SYSTEMS ON LIE ALGEBROIDS [J].
Cortes, Jorge ;
de Leon, Manuel ;
Carlos Marrero, Juan ;
Martinez, Eduardo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :213-271
[10]   Lagrangian submanifolds and dynamics on Lie algebroids [J].
de León, M ;
Marrero, JC ;
Martínez, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (24) :R241-R308