Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases

被引:11
作者
Khachatryan, A. Kh [1 ]
Khachatryan, Kh A. [2 ]
机构
[1] Armenian State Agrarian Univ, Yerevan, Armenia
[2] Armenian Natl Acad Sci, Inst Math, Yerevan, Armenia
关键词
Boltzmann equation; nonlinearity; mean mass velocity; bounded solution; monotonicity; GAS;
D O I
10.1007/s11232-012-0116-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Boltzmann equation in the framework of a nonlinear model for problems of the gas flow in a half-space (the Kramers problem). We prove the existence of a positive bounded solution and find the limit of this solution at infinity. We show that taking the nonlinear dependence of the collision integral on the distribution function into account leads to an asymptotically new solution of the initial equation. To illustrate the result, we present examples of functions describing the nonlinearity of the collision integral.
引用
收藏
页码:1315 / 1320
页数:6
相关论文
共 9 条
[1]  
Arabadzhyan L. G., 1987, J. Soviet Math, V36, P745, DOI DOI 10.1007/BF01085507
[2]   The temperature-jump problem in rarefied-gas dynamics [J].
Barichello, LB ;
Siewert, CE .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :353-364
[3]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[4]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[5]  
Engibaryan N., 1998, Comput. Math. Math. Phys, V38, P452
[6]   Exact linearization of the sliding problem for a dilute gas in the Bhatnagar-Gross-Krook model [J].
Engibaryan, NB ;
Khachatryan, AK .
THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 125 (02) :1589-1592
[7]  
Kogan M. N., 1967, DYNAMICS RARIFIED GA
[8]  
Latyshev A. V., 2001, COMP MATH MATH PHYS, V41, P1169
[9]   HALF-SPACE PROBLEMS IN KINETIC-THEORY OF GASES [J].
SIEWERT, CE ;
THOMAS, JR .
PHYSICS OF FLUIDS, 1973, 16 (09) :1557-1559