3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a local existence theorem

被引:58
作者
Drazic, Ivan [1 ]
Mujakovic, Nermina [2 ]
机构
[1] Univ Rijeka, Fac Engn, Rijeka, Croatia
[2] Univ Rijeka, Dept Math, Rijeka, Croatia
关键词
micropolar fluid; generalized solution; spherical symmetry; weak and strong convergence; NAVIER-STOKES EQUATIONS; GAS;
D O I
10.1186/1687-2770-2012-69
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonstationary 3-D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be the subset of bounded with two concentric spheres that present solid thermoinsulated walls. In thermodynamical sense fluid is perfect and polytropic. Assuming that the initial density and temperature are strictly positive we will prove that for smooth enough spherically symmetric initial data there exists a spherically symmetric generalized solution locally in time.
引用
收藏
页数:25
相关论文
共 50 条
[31]   The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity [J].
Qin, Yuming ;
Wang, Taige ;
Hu, Guili .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1010-1029
[32]   Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model [J].
Liu, Qingqing ;
Yin, Haiyan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :41-55
[33]   Global existence theorem for the 3-D generalized micropolar fluid system in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Ouidirne, Fatima ;
Allalou, Chakir ;
Oukessou, Mohamed .
FILOMAT, 2024, 38 (20) :7161-7171
[34]   Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations [J].
Wei, Ruiying ;
Guo, Boling ;
Li, Yin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) :2457-2480
[35]   Global Dynamics of 3-D Compressible Micropolar Fluids with Vacuum and Large Oscillations [J].
Huang, Bingkang ;
Liu, Lvqiao ;
Zhang, Lan .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)
[36]   CONVERGENT FINITE DIFFERENCE SCHEME FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID [J].
Mujakovic, Nermina ;
Crnjaric-Zic, Nelida .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) :94-124
[37]   Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions [J].
Basic-Sisko, Angela ;
Drazic, Ivan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (02)
[38]   Insight into 3-D Darcy-Forchheimer micropolar fluid flow over a nonlinear elongated sheet [J].
Sreelakshmi, K. ;
Lakshmi, R. Vijaya ;
Sarojamma, G. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2025,
[39]   ON THE GLOBAL EXISTENCE AND STABILITY OF 3-D VISCOUS CYLINDRICAL CIRCULATORY FLOWS [J].
Yin Huicheng ;
Zhang Lin .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (5-6) :337-358
[40]   GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J].
Mujakovic, Nermina ;
Crnjaric-Zic, Nelida .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) :1541-1576