Comparison of EEG synchrony measures for post-stroke neurorehabilitation

被引:3
作者
Kawano, Teiji [1 ,2 ,4 ]
Hattori, Noriaki [1 ,2 ,3 ,4 ]
Uno, Yutaka [4 ]
Hatakenaka, Megumi [1 ]
Yagura, Hajime [1 ]
Fujimoto, Hiroaki [1 ]
Yoshioka, Tomomi [1 ]
Nagasako, Michiko [1 ]
Otomune, Hironori [1 ]
Kitajo, Keiichi [4 ]
Miyai, Ichiro [1 ]
机构
[1] Morinomiya Hosp, Neurorehabil Res Inst, Osaka, Japan
[2] Osaka Univ, Grad Sch Med, Dept Neurol, Osaka, Japan
[3] Osaka Univ, Global Ctr Med Engn & Informat, Endowed Res Dept Clin Neuroengn, Osaka, Japan
[4] RIKEN Ctr Brain Sci, CBS TOYOTA Collaborat Ctr, Saitama, Japan
来源
2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2018年
关键词
electroencephalography; Functional Independence Measure; neurorehabilitation; stroke; synchrony; STROKE;
D O I
10.1109/SMC.2018.00015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In post-stroke neurorehabilitation, the Functional Independence Measure (FIM) is a standard clinical scale used to assess patient's activities of daily living. Recently, we reported a new electroencephalography-based biomarker (the phase synchrony index) that correlates with this scale. For a more comprehensive evaluation, we compared three synchrony measures: phase synchrony index, phase lag index, and imaginary part of coherency. These synchrony measures showed a significant correlation with FIM motor subscores in the same frequency bands, but in different ways. These differences may be partly attributed to the susceptibility to the spurious synchrony by volume conduction effects and/or presence of the ceiling effect of synchrony measures. Our results suggest that we should select an appropriate synchrony measure as a biomarker for stroke recovery depending on the brain network of interest.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 8 条
[1]   Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable [J].
Boyd, Lara A. ;
Hayward, Kathryn S. ;
Ward, Nick S. ;
Stinear, Cathy M. ;
Rosso, Charlotte ;
Fisher, Rebecca J. ;
Carter, Alexandre R. ;
Leff, Alex P. ;
Copland, David A. ;
Carey, Leeanne M. ;
Cohen, Leonardo G. ;
Basso, D. Michele ;
Maguire, Jane M. ;
Cramer, Steven C. .
INTERNATIONAL JOURNAL OF STROKE, 2017, 12 (05) :480-493
[2]   Large-Scale Phase Synchrony Reflects Clinical Status After Stroke: An EEG Study [J].
Kawano, Teiji ;
Hattori, Noriaki ;
Uno, Yutaka ;
Kitajo, Keiichi ;
Hatakenaka, Megumi ;
Yagura, Hajime ;
Fujimoto, Hiroaki ;
Yoshioka, Tomomi ;
Nagasako, Michiko ;
Otomune, Hironori ;
Miyai, Ichiro .
NEUROREHABILITATION AND NEURAL REPAIR, 2017, 31 (06) :561-570
[3]  
Keith R A, 1987, Adv Clin Rehabil, V1, P6
[4]   Studying single-trials of phase synchronous activity in the brain [J].
Lachaux, JP ;
Rodriguez, E ;
Van Quyen, ML ;
Lutz, A ;
Martinerie, J ;
Varela, FJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (10) :2429-2439
[5]   Identifying true brain interaction from EEG data using the imaginary part of coherency [J].
Nolte, G ;
Bai, O ;
Wheaton, L ;
Mari, Z ;
Vorbach, S ;
Hallett, M .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (10) :2292-2307
[6]   Nonlinear multivariate analysis of neurophysiological signals [J].
Pereda, E ;
Quiroga, RQ ;
Bhattacharya, J .
PROGRESS IN NEUROBIOLOGY, 2005, 77 (1-2) :1-37
[7]   Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources [J].
Stam, Cornelis J. ;
Nolte, Guido ;
Daffertshofer, Andreas .
HUMAN BRAIN MAPPING, 2007, 28 (11) :1178-1193
[8]   Prediction of motor recovery after stroke: advances in biomarkers [J].
Stinear, Cathy M. .
LANCET NEUROLOGY, 2017, 16 (10) :826-836