An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow

被引:9
作者
Bourantas, G. C. [1 ]
Loukopoulos, V. C. [2 ]
Joldes, G. R. [1 ,3 ]
Wittek, A. [1 ]
Miller, K. [1 ,4 ]
机构
[1] Univ Western Australia, Dept Mech Engn, Intelligent Syst Med Lab, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Univ Patras, Dept Phys, GR-26500 Patras, Greece
[3] Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA, Australia
[4] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
基金
澳大利亚研究理事会;
关键词
Meshless point collocation; Discretization Corrected Particle Strength; Exchange (DC PSE); Unsteady MHD; Hartmann number; Explicit; FINITE-ELEMENT-METHOD; PETROV-GALERKIN MLPG; CHANNEL FLOWS; EQUATIONS; PIPE; IMPLEMENTATION; DISCRETIZATION;
D O I
10.1016/j.amc.2018.11.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a meshless collocation scheme for the numerical solution of magnetohydrodynamics (MHD) flow equations. We consider the transient laminar flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct. The flow is driven by the current produced by electrodes placed on the walls of the duct. The method combines a meshless collocation scheme with the newly developed Discretization Corrected Particle Strength Exchange (DC PSE) interpolation method. To highlight the applicability of the method, we discretize the spatial domain by using uniformly (Cartesian) and irregularly distributed nodes. The proposed solution method can handle high Hartmann (Ha) numbers and captures the boundary layers formed in such cases, without the presence of unwanted oscillations, by employing a local mesh refinement procedure close to the boundaries. The use of local refinement reduces the computational cost. We apply an explicit time integration scheme and we compute the critical time step that ensures stability through the Gershgorin theorem. Finally, we present numerical results obtained using different orientation of the applied magnetic field. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 233
页数:19
相关论文
共 59 条
[1]  
Aluru NR, 2000, INT J NUMER METH ENG, V47, P1083, DOI 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO
[2]  
2-N
[3]  
Atluri S.N., 2002, MESHLESS LOCAL PETRO
[4]   A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J].
Atluri, SN ;
Kim, HG ;
Cho, JY .
COMPUTATIONAL MECHANICS, 1999, 24 (05) :348-372
[5]   MHD FLOW IN AN ANNULAR CHANNEL - THEORY AND EXPERIMENT [J].
BAYLIS, JA ;
HUNT, JCR .
JOURNAL OF FLUID MECHANICS, 1971, 48 (AUG16) :423-&
[6]   An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems [J].
Bourantas, G. C. ;
Skouras, E. D. ;
Loukopoulos, V. C. ;
Nikiforidis, G. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) :8135-8160
[7]  
Bourantas GC, 2009, CMES-COMP MODEL ENG, V43, P1
[8]   Using DC PSE operator discretization in Eulerian meshless collocation methods improves their robustness in complex geometries [J].
Bourantas, George C. ;
Cheeseman, Bevan L. ;
Ramaswamy, Rajesh ;
Sbalzarini, Ivo E. .
COMPUTERS & FLUIDS, 2016, 136 :285-300
[9]   FLIP MHD - A PARTICLE-IN-CELL METHOD FOR MAGNETOHYDRODYNAMICS [J].
BRACKBILL, JU .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 96 (01) :163-192
[10]   The application of the boundary element method to the magnetohydrodynamic duct flow [J].
Carabineanu, A ;
Dinu, A ;
Oprea, I .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (06) :971-981