Quasi-periodic stability of normally resonant tori

被引:30
作者
Broer, Henk W. [2 ]
Ciocci, M. Cristina [1 ]
Hanssmann, Heinz [3 ]
Vanderbauwhede, Andre [4 ]
机构
[1] Univ Coll W Flanders, Dept PIH, B-8500 Kortrijk, Belgium
[2] Univ Groningen, Dept Math & Comp Sci, NL-9700 AK Groningen, Netherlands
[3] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[4] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
Kolmogorov-Arnold-Moser theory; Quasi-periodic stability; Normal-internal resonance; Covering space; Preservation of structure; Reversibility; Equivariance; HOPF-BIFURCATION; DIMENSIONAL TORI; SYSTEMS; PERSISTENCE;
D O I
10.1016/j.physd.2008.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study quasi-periodic tori under a normal-internal resonance, possibly with multiple eigenvalues. Two non-degeneracy conditions play a role. The first of these generalizes invertibility of the Floquet matrix and prevents drift of the lower dimensional torus. The second condition involves a Kolmogorov-like variation of the internal frequencies and simultaneously versality of the Floquet matrix unfolding. We focus on the reversible setting, but our results carry over to the Hamiltonian and dissipative contexts. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 28 条
  • [1] [Anonymous], DYN REPORT
  • [2] Arnold V. I., 1971, Russian Math. Surveys, V26, P29
  • [3] Bourgain J, 1997, MATH RES LETT, V4, P445
  • [4] BRAAKSMA BLJ, 1990, MEM AM MATH SOC, V83, P83
  • [5] ON A QUASI-PERIODIC HOPF-BIFURCATION
    BRAAKSMA, BLJ
    BROER, HW
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1987, 4 (02): : 115 - 168
  • [6] Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach
    Broer, H
    Hanssmann, H
    Jorba, A
    Villanueva, J
    Wagener, F
    [J]. NONLINEARITY, 2003, 16 (05) : 1751 - 1791
  • [7] Normal linear stability of quasi-periodic tori
    Broer, H. W.
    Hoo, J.
    Naudot, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 355 - 418
  • [8] The quasi-periodic reversible Hopf bifurcation
    Broer, Henk W.
    Ciocci, M. Cristina
    Hanssmann, Heinz
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2605 - 2623
  • [9] The quasi-periodic Hamiltonian Hopf bifurcation
    Broer, Henk W.
    Hanssmann, Heinz
    Hoo, Jun
    [J]. NONLINEARITY, 2007, 20 (02) : 417 - 460
  • [10] BROER HW, 1995, J DYNAM DIFFERENTIAL, V7, P191, DOI DOI 10.1007/BF02218818