A Real-Time Flexible Telecommunication Decoding Architecture Using FPGA Partial Reconfiguration

被引:7
作者
Ma, Longyu [1 ]
Sham, Chiu-Wing [1 ]
Sun, Jing [1 ]
Valencia Tenorio, Raul [1 ]
机构
[1] Univ Auckland, Sch Comp Sci, Auckland 1142, New Zealand
关键词
Decoding; Field programmable gate arrays; Computer architecture; Parity check codes; Hardware; Real-time systems; Signal processing algorithms; FPGA; dynamic partial reconfiguration; partial reconfiguration; LDPC; LDPC DECODER;
D O I
10.1109/TCSII.2019.2953700
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Modern telecommunication decoding schemes, leading to high computational complexity and power consumption, are weakening the feasibility of real-time applications. In this brief, a real-time reconfigurable decoding architecture is introduced to alleviate the contradiction mentioned above. The proposed architecture is partially reconfigurable on the fly so that different decoding schemes can be deployed onto merely one physical partition of reconfigurable hardware and be switched with another without significant penalty on timing and complexity. The decoding system is implemented on an FPGA evaluation board and the experiment result shows that our approach renders ple decoding schemes implemented in one system with feasibility, simplicity and power-saving ability. By adopting our architecture and the development flow, a three-LDPC-code decoder is implemented. Moreover, nearly 50% savings on hardware logic and milli-second-level real-time switching speed for decoders are both achieved.
引用
收藏
页码:2149 / 2153
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 2016, IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012, P1, DOI [DOI 10.1109/IEEESTD.2016.7786995, https://doi.org/10.1109/IEEESTD.2016.7786995]
[2]   Real Time Video Processing on FPGA Using on the Fly Partial Reconfiguration [J].
Bhandari, Sheetal U. ;
Subbaraman, Shaila ;
Pujari, Shashank S. ;
Mahajan, Rashmi .
PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2009, :244-+
[3]  
Chen B, 2017, IEEE INT CONF ELECTR, P493, DOI 10.1109/ICEIEC.2017.8076613
[4]   A 3.3-Gbps bit-serial block-interlaced min-sum LDPC decoder in 0.13-μm CMOS [J].
Darabiha, Ahmad ;
Carusone, Anthony Chan ;
Kschischang, Frank R. .
PROCEEDINGS OF THE IEEE 2007 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2007, :459-462
[5]  
DeHon A., 1999, FPGA'99. AGM/SIGDA International Symposium on Field Programmable Gate Arrays, P69, DOI 10.1145/296399.296431
[6]  
Pham DM, 2012, INT CONF COMPUT INFO, P495, DOI 10.1109/ICCITechn.2012.6509755
[7]   Hardware-Efficient Node Processing Unit Architectures for Flexible LDPC Decoder Implementations [J].
Hailes, Peter ;
Xu, Lei ;
Maunder, Robert G. ;
Al-Hashimi, Bashir M. ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (12) :1919-1923
[8]  
InKi Lee, 2013, 2013 International Conference on ICT Convergence (ICTC), P606, DOI 10.1109/ICTC.2013.6675433
[9]   High-Throughput Multi-Core LDPC Decoders Based on x86 Processor [J].
Le Gal, Bertrand ;
Jego, Christophe .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016, 27 (05) :1373-1386
[10]  
Li Mole, 2015, 2015 IEEE International Model-Driven Requirements Engineering Workshop (MoDRE). Proceedings, P1, DOI 10.1109/MoDRE.2015.7343874