Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder

被引:49
|
作者
Juge, Romeo [1 ]
Je, Soong-Geun [1 ]
Chaves, Dayane de Souza [2 ]
Pizzini, Stefania [2 ]
Buda-Prejbeanu, Liliana D. [1 ]
Aballe, Lucia [3 ]
Foerster, Michael [3 ]
Locatelli, Andrea [4 ]
Mentes, Tevfik Onur [4 ]
Sala, Alessandro [4 ]
Maccherozzi, Francesco [5 ]
Dhesi, Sarnjeet S. [5 ]
Auffret, Stephane [1 ]
Gautier, Eric [1 ]
Gaudin, Gilles [1 ]
Vogel, Jan [2 ]
Boulle, Olivier [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, CEA, Spintec,Grenoble INP,INAC Spintec, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, Inst Neel, 25 Ave Martyrs,BP 166, F-38042 Grenoble 9, France
[3] ALBA Synchrotron Light Facil, Carrer Llum 2-26, Cerdanyola Del Valles 08290, Barcelona, Spain
[4] Elettra Sincrotrone SCpA, SS 14 Km 163-5 AREA Sci Pk, I-34149 Trieste, Italy
[5] Diamond Light Source, Didcot OX11 0DE, Oxon, England
关键词
Magnetic skyrmion; XMCD; Disorder; Grain distribution; DYNAMICS; LATTICE;
D O I
10.1016/j.jmmm.2017.10.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our XMCD-PEEM observations also highlight the important role of the pinning on the skyrmions size and stability under an out-of-plane magnetic field. Micromagnetic simulations reveal that the effect of local pinning can be well accounted for by considering the thin film grain structure with local anisotropy variations and reproduce well the dependence of the skyrmion diameter on the magnetic field and the geometry. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [41] Stability of skyrmions on curved surfaces in the presence of a magnetic field
    Carvalho-Santos, V. L.
    Elias, R. G.
    Altbir, D.
    Fonseca, J. M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 391 : 179 - 183
  • [42] Creation and annihilation of artificial magnetic skyrmions with the electric field
    程军
    孙亮
    张一可
    吉同舟
    曹荣幸
    缪冰锋
    赵永刚
    丁海峰
    ChinesePhysicsB, 2024, 33 (03) : 158 - 163
  • [43] Stabilization of Skyrmions in a Nanodisk Without an External Magnetic Field
    Li, Hang
    Akosa, Collins Ashu
    Yan, Peng
    Wang, Yuanxu
    Cheng, Zhenxiang
    PHYSICAL REVIEW APPLIED, 2020, 13 (03)
  • [44] Computational prediction of phase-stability skyrmion maps, internal magnetic configuration, and size of magnetic skyrmions in confined magnetic nanostructures
    Vidal, A. E.
    Alegre, J. W.
    Nunez, Y.
    Vergara, H. N.
    Costilla, J. I.
    Talledo, A.
    Pujada, B. R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 622
  • [45] Phase behavior of magnetic nanoparticles dispersions in bulk and confined geometries
    Cabuil, V
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2000, 5 (1-2) : 44 - 48
  • [46] Dynamics of magnetic skyrmions
    刘冶华
    李有泉
    Chinese Physics B, 2015, 24 (01) : 24 - 39
  • [47] Magnetic skyrmions unwrapped
    Alexey A. Kovalev
    Nature Physics, 2022, 18 : 853 - 854
  • [48] Magnetic Vortices and Skyrmions
    Guslienko, Konstantin Y.
    JOURNAL OF MAGNETICS, 2019, 24 (04) : 549 - 567
  • [49] The Influence of Electric Field on Magnetic Vortices in Confined Magnetic Structures
    Pyatakov, A. P.
    Meshkov, G. A.
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 280 - 282
  • [50] Creation of nanometric magnetic skyrmions by global application of circularly polarized microwave magnetic field
    Miyake, Masayuki
    Mochizuki, Masahito
    PHYSICAL REVIEW B, 2020, 101 (09)