Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder

被引:49
|
作者
Juge, Romeo [1 ]
Je, Soong-Geun [1 ]
Chaves, Dayane de Souza [2 ]
Pizzini, Stefania [2 ]
Buda-Prejbeanu, Liliana D. [1 ]
Aballe, Lucia [3 ]
Foerster, Michael [3 ]
Locatelli, Andrea [4 ]
Mentes, Tevfik Onur [4 ]
Sala, Alessandro [4 ]
Maccherozzi, Francesco [5 ]
Dhesi, Sarnjeet S. [5 ]
Auffret, Stephane [1 ]
Gautier, Eric [1 ]
Gaudin, Gilles [1 ]
Vogel, Jan [2 ]
Boulle, Olivier [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, CEA, Spintec,Grenoble INP,INAC Spintec, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, Inst Neel, 25 Ave Martyrs,BP 166, F-38042 Grenoble 9, France
[3] ALBA Synchrotron Light Facil, Carrer Llum 2-26, Cerdanyola Del Valles 08290, Barcelona, Spain
[4] Elettra Sincrotrone SCpA, SS 14 Km 163-5 AREA Sci Pk, I-34149 Trieste, Italy
[5] Diamond Light Source, Didcot OX11 0DE, Oxon, England
关键词
Magnetic skyrmion; XMCD; Disorder; Grain distribution; DYNAMICS; LATTICE;
D O I
10.1016/j.jmmm.2017.10.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our XMCD-PEEM observations also highlight the important role of the pinning on the skyrmions size and stability under an out-of-plane magnetic field. Micromagnetic simulations reveal that the effect of local pinning can be well accounted for by considering the thin film grain structure with local anisotropy variations and reproduce well the dependence of the skyrmion diameter on the magnetic field and the geometry. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [21] Electric-field guiding of magnetic skyrmions
    Upadhyaya, Pramey
    Yu, Guoqiang
    Amiri, Pedram Khalili
    Wang, Kang L.
    PHYSICAL REVIEW B, 2015, 92 (13)
  • [22] Multi-field control on magnetic skyrmions
    Dong Bo-Wen
    Zhang Jing-Yan
    Peng Li-Cong
    He Min
    Zhang Ying
    Zhao Yun-Chi
    Wang Chao
    Sun Yang
    Cai Jian-Wang
    Wang Wen-Hong
    Wei Hong-Xiang
    Shen Bao-Gen
    Jiang Yong
    Wang Shou-Guo
    ACTA PHYSICA SINICA, 2018, 67 (13)
  • [23] Effect of curvature on the eigenstates of magnetic skyrmions
    Korniienko, Anastasiia
    Kakay, Attila
    Sheka, Denis D.
    Kravchuk, Volodymyr P.
    PHYSICAL REVIEW B, 2020, 102 (01)
  • [24] Manipulating and trapping skyrmions by magnetic field gradients
    Wang, Chengjie
    Xiao, Dun
    Chen, Xing
    Zhou, Yan
    Liu, Yaowen
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [25] Electric field control of Skyrmions in magnetic nanodisks
    Nakatani, Y.
    Hayashi, M.
    Kanai, S.
    Fukami, S.
    Ohno, H.
    APPLIED PHYSICS LETTERS, 2016, 108 (15)
  • [26] Skyrmions in dynamic magnetic field: Hysteresis behavior
    Akyildiz, Aymila
    Akinci, Umit
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 659
  • [27] Asymmetric Motion of Magnetic Skyrmions in Ferromagnetic Nanotubes Induced by a Magnetic Field
    Bao, Bei
    Yang, Mingming
    Yan, Ming
    SYMMETRY-BASEL, 2022, 14 (06):
  • [28] Stability and asymptotic interactions of chiral magnetic skyrmions in a tilted magnetic field
    Barton-Singer, Bruno
    Schroers, Bernd J.
    SCIPOST PHYSICS, 2023, 15 (01):
  • [29] Magnetic skyrmions
    不详
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 455 : 1 - 2
  • [30] Topological Hall effect for electron scattering on nanoscale skyrmions in external magnetic field
    Denisov, K. S.
    Rozhansky, I., V
    Potkina, M. N.
    Lobanov, I. S.
    Lahderanta, E.
    Uzdin, V. M.
    PHYSICAL REVIEW B, 2018, 98 (21)