Microstructural and Morphological Effects on Charge Storage Properties in MnO2-Carbon Nanofibers Based Supercapacitors

被引:35
作者
Ghodbane, Ouassim [1 ]
Louro, Melanie [2 ,3 ]
Coustan, Laura [2 ,3 ]
Patru, Alexandra [2 ,3 ]
Favier, Frederic [2 ,3 ]
机构
[1] Pole Technol Sidi Thabet, Inst Natl Rech & Analyse Phys Chim, Lab Mat Utiles, Sidi Thabet 2020, Tunisia
[2] Univ Montpellier 2, CNRS, Inst Charles Gerhardt, UMR 5253, F-34095 Montpellier 05, France
[3] CNRS, FR 3459, Reseau Stockage Elect Chim Energie RS2E, F-75700 Paris, France
关键词
NA-RICH BIRNESSITE; MANGANESE OXIDE; CARBON-FIBER; HYDROTHERMAL SYNTHESIS; HEXAGONAL BIRNESSITE; ELECTRODE MATERIAL; HIGH-ENERGY; MNO2; COMPOSITES; PERFORMANCE;
D O I
10.1149/2.112311jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
MnO2-carbon nanofibers (CNFs) composites were developed by dedicated synthetic routes and characterized as positive electrode materials for electrochemical capacitors. A series of four MnO2 allotropic phases were investigated and commented on through MnO2 microstructures, morphologies and their electronic and ionic conductivities. The MnO2-CNFs morphologies were imaged by transmission electron microscopy (TEM). Both MnO2 birnessite and cryptomelane CNFs nanostructures show a nanoflakes-like morphology. For Octahedral Molecular Sieves CNFs (OMS-5-CNFs), a homogeneous MnO2 film was grafted at the entire carbon surface, while the spinel-CNFs composite shows the formation of agglomerated nanoparticles at the carbon surface. These various fiber decoration designs greatly influence the charge storage of the resulting electrodes. The electrochemical performances of MnO2-CNFs were studied by cyclic voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Independently on the applied current density, the capacitances were found to increase in the following order: spinel-CNF < OMS-5-CNF < cryptomelane-CNF < birnessite-CNF. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2315 / A2321
页数:7
相关论文
共 67 条
[1]   Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J].
Athouel, Laurence ;
Moser, Francois ;
Dugas, Romain ;
Crosnier, Olivier ;
Belanger, Daniel ;
Brousse, Thierry .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (18) :7270-7277
[2]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[3]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[4]   Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes [J].
Chen, Wei ;
Fan, Zhongli ;
Gu, Lin ;
Bao, Xinhe ;
Wang, Chunlei .
CHEMICAL COMMUNICATIONS, 2010, 46 (22) :3905-3907
[5]   Fibrous MnO2 electrode electrodeposited on carbon fiber for a fuel cell/battery system [J].
Choi, Bokkyu ;
Lee, Sunmook ;
Fushimi, Chihiro ;
Tsutsumi, Atsushi .
ELECTROCHIMICA ACTA, 2011, 56 (19) :6696-6701
[6]   Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes [J].
Chuang, Chih-Ming ;
Huang, Cheng-Wei ;
Teng, Hsisheng ;
Ting, Jyh-Ming .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (13) :1524-1529
[7]   Carbon-poly(3-methylthiophene) hybrid supercapacitors [J].
Di Fabio, A ;
Giorgi, A ;
Mastragostino, M ;
Soavi, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A845-A850
[8]  
Drits VA, 1997, AM MINERAL, V82, P946
[9]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[10]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418