Infinite Dimensional Bicomplex Spectral Decomposition Theorem

被引:7
作者
Charak, Kuldeep Singh [1 ]
Kumar, Ravinder [1 ]
Rochon, Dominic [2 ]
机构
[1] Univ Jammu, Dept Math, Jammu 180006, India
[2] Univ Quebec Trois Rivieres, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bicomplex numbers; Bicomplex Algebras; Hilbert Spaces; Compact Operators; Spectral Decomposition Theorem; QUANTUM HARMONIC-OSCILLATOR; HILBERT-SPACE;
D O I
10.1007/s00006-013-0385-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a bicomplex version of the Spectral Decomposition Theorem on infinite dimensional bicomplex Hilbert spaces. In the process, the ideas of bounded linear operators, orthogonal complements and compact operators on bicomplex Hilbert spaces are introduced and treated in relation with the classical Hilbert space M' imbedded in any bicomplex Hilbert space M.
引用
收藏
页码:593 / 605
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1995, COLL MATH J
[2]  
[Anonymous], 1982, Complex Var. Theory Appl. Int. J, DOI DOI 10.1080/17476938208814009
[3]   The Complex Algebra of Physical Space: A Framework for Relativity [J].
Baylis, W. E. ;
Keselica, J. D. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) :537-561
[4]  
Brackx F., 1982, RES NOTES MATH
[5]   Complete Families of Solutions for the Dirac Equation Using Bicomplex Function Theory and Transmutations [J].
Campos, Hugo M. ;
Kravchenko, Vladislav V. ;
Mendez, Luis M. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) :577-594
[6]  
Debnath L., 1999, INTRO HILBERT SPACES, Vsecond
[7]  
Delanghe R., 1992, Clifford Analysis and Spinor Valued Functions
[8]   ON A GENERALIZED FATOU-JULIA THEOREM IN MULTICOMPLEX SPACES [J].
Garant-Pelletier, V. ;
Rochon, D. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2009, 17 (03) :241-255
[9]  
Hansen V L., 2006, Functional Analysis, Entering Hilbert Space
[10]   The bicomplex quantum harmonic oscillator [J].
Lavoie, R. Gervais ;
Marchildon, L. ;
Rochon, D. .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10) :1173-1192