Characterization of graphene layers by Kelvin probe force microscopy and micro-Raman spectroscopy

被引:12
作者
Nazarov, A. N. [1 ]
Gordienko, S. O. [1 ]
Lytvyn, P. M. [1 ]
Strelchuk, V. V. [1 ]
Nikolenko, A. S. [1 ]
Vasin, A. V. [1 ]
Rusavsky, A. V. [1 ]
Lysenko, V. S. [1 ]
Popov, V. P.
机构
[1] NAS Ukraine, Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 7-8 | 2013年 / 10卷 / 7-8期
关键词
graphene; magnetron sputtering; micro-Raman spectroscopy; Kelvin probe force microscopy; atomic force microscopy;
D O I
10.1002/pssc.201200918
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper considers a synthesis of graphene flakes on the Ni surface by vacuum thermal treatment of the "sandwich" a-SiC/Ni multilayer deposited on silicon wafer by magnetron sputtering technique. Lateral size of graphene flake is estimated to be about hundreds of microns while thickness estimated by Raman scattering varied from one to few layers. Atom force microscopy (AFM) is not able to detect graphene flakes in regime of surface topology examination due to large roughness of Ni surface. Employment of scanning Kelvin probe force microscopy (SKPFM) demonstrates a correlation of surface potential and graphene flakes visible by optical microscopy. Moreover, the SKPFM allows to detect the graphene layer even in case of absence of optical contrast from single graphene layer on nickel surface. Using of KPFM the potential differences between Ni and graphene is determined.
引用
收藏
页码:1172 / 1175
页数:4
相关论文
共 18 条
[1]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[4]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[5]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[6]   Tunable interfacial properties of epitaxial graphene on metal substrates [J].
Gao, Min ;
Pan, Yi ;
Zhang, Chendong ;
Hu, Hao ;
Yang, Rong ;
Lu, Hongliang ;
Cai, Jinming ;
Du, Shixuan ;
Liu, Feng ;
Gao, H. -J. .
APPLIED PHYSICS LETTERS, 2010, 96 (05)
[7]  
Hofrichter J, 2010, NANO LETT, V10, P36, DOI [10.1021/nl902558x, 10.1021/nl902558X]
[8]   Laser-induced disassembly of a graphene single crystal into a nanocrystalline network [J].
Krauss, B. ;
Lohmann, T. ;
Chae, D. -H. ;
Haluska, M. ;
von Klitzing, K. ;
Smet, J. H. .
PHYSICAL REVIEW B, 2009, 79 (16)
[9]   Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J].
Li, Xuesong ;
Cai, Weiwei ;
An, Jinho ;
Kim, Seyoung ;
Nah, Junghyo ;
Yang, Dongxing ;
Piner, Richard ;
Velamakanni, Aruna ;
Jung, Inhwa ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. ;
Colombo, Luigi ;
Ruoff, Rodney S. .
SCIENCE, 2009, 324 (5932) :1312-1314
[10]   Raman spectroscopy in graphene [J].
Malard, L. M. ;
Pimenta, M. A. ;
Dresselhaus, G. ;
Dresselhaus, M. S. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 473 (5-6) :51-87