Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process

被引:45
作者
Wattanaphan, Pathamaporn [1 ,2 ]
Sema, Teerawat [1 ]
Idem, Raphael [1 ,2 ]
Liang, Zhiwu [1 ]
Tontiwachwuthikul, Paitoon [1 ,2 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Joint Int Ctr Capture & Storage iCCS CO2, Changsha 410082, Hunan, Peoples R China
[2] Univ Regina, Fac Engn & Appl Sci, Int Test Ctr Capture ITC CO2, Regina, SK S4S 0A2, Canada
基金
中国国家自然科学基金; 加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Corrosion; Carbon steel; Flue gas; Monoethanolamine; Carbon dioxide capture; REACTION-KINETICS; AQUEOUS-SOLUTIONS; MASS-TRANSFER; ABSORPTION; MONOETHANOLAMINE; DEGRADATION; BEHAVIOR; SOLVENT;
D O I
10.1016/j.ijggc.2013.08.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of flue gas composition on carbon steel (1020) corrosion in the MEA-based CO2 capture process was studied by varying impurities which represented different levels of components in the flue gas stream over a base-case condition of just an aqueous MEA, CO2 and O-2. The components studied were NaCl, HCl, FeCl2, Na2SO4, FeSO4 center dot 7H(2)O, H2SO4 (from fly ash), HNO3 (from NO2); and H2SO4 and H2SO3 (from SO3 and SO2, respectively). The results illustrated that NaCl, HCl, Na2SO4, FeSO4 center dot 7H(2)O, H2SO4, and HNO3 all accelerated the corrosion process; while, FeCl2 slowed down rate of carbon steel corrosion. Surprisingly, H2SO3, NaHSO3, and Na2SO3, either behaved as corrosion promoters, or corrosion inhibitors; depending strongly on their concentrations. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:340 / 349
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2000, THESIS U REGINA REGI
[2]  
[Anonymous], 2003, CORROSION PROTECTION
[3]  
[Anonymous], 2004, ANN BOOK ASTM STAND, P3
[4]  
[Anonymous], 1999, ANN BOOK ASTM STAND, V3
[5]   Capture technologies: Improvements and Promising Developments [J].
Blomen, Eliane ;
Hendriks, Chris ;
Neele, Filip .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :1505-1512
[6]   COMPARISON OF CHEMICAL SOLVENTS FOR MITIGATING CO2 EMISSIONS FROM COAL-FIRED POWER-PLANTS [J].
CHAKMA, A ;
MEHROTRA, AK ;
NIELSEN, B .
HEAT RECOVERY SYSTEMS & CHP, 1995, 15 (02) :231-240
[7]   AN ENERGY-EFFICIENT MIXED-SOLVENT FOR THE SEPARATION OF CO2 [J].
CHAKMA, A .
ENERGY CONVERSION AND MANAGEMENT, 1995, 36 (6-9) :427-430
[8]   CO2 capture processes - Opportunities for improved energy efficiencies [J].
Chakma, A .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 :S51-S56
[9]   Deep greenhouse gas emission reductions in Europe: Exploring different options [J].
Deetman, Sebastiaan ;
Hof, Andries F. ;
Pfluger, Benjamin ;
van Vuuren, Detlef P. ;
Girod, Bastien ;
van Ruijven, Bas J. .
ENERGY POLICY, 2013, 55 :152-164
[10]   Advancesn in CO2 capture technology -: The US Department of Energy's Carbon Sequestration Program [J].
Figueroa, Jose D. ;
Fout, Timothy ;
Plasynski, Sean ;
McIlvried, Howard ;
Srivastava, Rameshwar D. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (01) :9-20