Mitochondrial Dysfunction and Permeability Transition in Osteosarcoma Cells Showing the Warburg Effect

被引:50
作者
Giang, An-Hoa [1 ]
Raymond, Tamara [1 ]
Brookes, Paul [2 ]
Bentley, Karen de Mesy [3 ]
Schwarz, Edward [1 ]
O'Keefe, Regis [1 ]
Eliseev, Roman [1 ]
机构
[1] Univ Rochester, Ctr Musculoskeletal Res, Sch Med & Dent, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Anesthesiol, Sch Med & Dent, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Pathol, Sch Med & Dent, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
Cancer; Glycolysis; Mitochondria; Mitochondrial Permeability Transition; Osteosarcoma; Warburg Effect; Cyclophilin D; CYCLOPHILIN-D; CANCER-CELLS; REPERFUSION INJURY; CYCLING HYPOXIA; APOPTOSIS; PORE; P53; INHIBITION; GLYCOLYSIS; METABOLISM;
D O I
10.1074/jbc.M113.507129
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The Warburg effect in cancer is manifested by increased glycolysis and decreased respiration. Our goal was to determine how mitochondria are suppressed in osteosarcoma (OS). Results: OS cells showing the Warburg effect have markers of the mitochondrial permeability transition (MPT). Conclusion: MPT plays a possible role in suppression of mitochondrial function in OS. Significance: Our data implicate the MPT in metabolic reprogramming in cancer. Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead to development of new approaches to reverse metabolic reprogramming. We have evaluated mitochondrial function and morphology in poorly respiring LM7 and 143B osteosarcoma (OS) cell lines showing the Warburg effect in comparison with actively respiring Saos2 and HOS OS cells and noncancerous osteoblastic hFOB cells. In LM7 and 143B cells, we detected markers of the mitochondrial permeability transition (MPT), such as mitochondrial swelling, depolarization, and membrane permeabilization. In addition, we detected mitochondrial swelling in human OS xenografts in mice and archival human OS specimens using electron microscopy. The MPT inhibitor sanglifehrin A reversed MPT markers and increased respiration in LM7 and 143B cells. Our data suggest that the MPT may play a role in suppression of mitochondrial function, contributing to the Warburg effect in cancer.
引用
收藏
页码:33303 / 33311
页数:9
相关论文
共 50 条
[41]   Depletion of Mitochondrial Cyclophilin D in Endothelial and Smooth Muscle Cells Attenuates Vascular Dysfunction and Hypertension [J].
Dikalova, Anna ;
Ao, Mingfang ;
Lantier, Louise ;
Gutor, Sergey ;
Dikalov, Sergey .
FUNCTION, 2025, 6 (02)
[42]   The mitochondrial permeability transition in neurologic disease [J].
Norenberg, M. D. ;
Rao, K. V. Rama .
NEUROCHEMISTRY INTERNATIONAL, 2007, 50 (7-8) :983-997
[43]   Inhibition of the mitochondrial permeability transition improves bone fracture repair [J].
Shares, Brianna H. ;
Smith, Charles O. ;
Sheu, Tzong-Jen ;
Sautchuk, Rubens ;
Schilling, Kevin ;
Shum, Laura C. ;
Paine, Ananta ;
Huber, Aric ;
Gira, Emma ;
Brown, Edward ;
Awad, Hani ;
Eliseev, Roman A. .
BONE, 2020, 137
[44]   The Mitochondrial Permeability Transition Pore Regulates Endothelial Bioenergetics and Angiogenesis [J].
Marcu, Raluca ;
Kotha, Surya ;
Zhi, Zhongwei ;
Qin, Wan ;
Neeley, Christopher K. ;
Wang, Ruikang K. ;
Zheng, Ying ;
Hawkins, Brian J. .
CIRCULATION RESEARCH, 2015, 116 (08) :1336-1345
[45]   Physiologic Functions of Cyclophilin D and the Mitochondrial Permeability Transition Pore [J].
Elrod, John W. ;
Molkentin, Jeffery D. .
CIRCULATION JOURNAL, 2013, 77 (05) :1111-1122
[46]   Involvement of mitochondrial permeability transition in hepatitis B virus replication [J].
Tan, Chang ;
Guo, Hua ;
Zheng, Maofa ;
Chen, Yu ;
Huang, Weida .
VIRUS RESEARCH, 2009, 145 (02) :307-311
[47]   Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore [J].
Quinsay, Melissa N. ;
Thomas, Robert L. ;
Lee, Youngil ;
Gustafsson, Asa B. .
AUTOPHAGY, 2010, 6 (07) :855-862
[48]   Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy [J].
Fernandez Cardoso, Gabriela Miranda ;
Pletsch, Julia Tauana ;
Parmeggiani, Belisa ;
Grings, Mateus ;
Glanzel, Nicolas Manzke ;
Bobermin, Larissa Daniele ;
Amaral, Alexandre Umpierrez ;
Wajner, Moacir ;
Leipnitz, Guilhian .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (09) :2192-2201
[49]   Contribution of Mitochondrial Activity to Doxorubicin-Resistance in Osteosarcoma Cells [J].
Giacomini, Isabella ;
Cortini, Margherita ;
Tinazzi, Mattia ;
Baldini, Nicola ;
Cocetta, Veronica ;
Ragazzi, Eugenio ;
Avnet, Sofia ;
Montopoli, Monica .
CANCERS, 2023, 15 (05)
[50]   The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes? [J].
Pinto, M. Martins ;
Paumard, P. ;
Bouchez, C. ;
Ransac, S. ;
Duvezin-Caubet, S. ;
Mazata, J. P. ;
Rigouleta, M. ;
Devina, A. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2023, 1864 (01)