The Research of Grade Prediction Model Based on Improved K-means Algorithm

被引:0
作者
Zhang, Yongguang [1 ]
Wang, Hua [1 ]
Li, Hongyang [1 ]
机构
[1] Capital Normal Univ, Informat Engn Coll, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016) | 2016年 / 133卷
关键词
k-means algorithm; grade prediction; similarity measurement;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grades reflect how well you learnt in courses. This paper introduce a model to predict student grade-data with a refined K-means clustering algorithm. K-means clustering algorithm based on the normal distribution is proposed to overcome the flaws that caused by using Euclidean distance algorithm to measure the similarity between objects. Experiment results show that K-means clustering algorithm based on the normal distribution is more accurate than classical K-means clustering algorithm in grade-data prediction.
引用
收藏
页码:7 / 10
页数:4
相关论文
共 6 条
  • [1] Hartigan J., 1975, CLUSTERING ALGORITHM
  • [2] THE POTENTIAL OF DOUBLE K-MEANS CLUSTERING FOR BANANA IMAGE SEGMENTATION
    Hu, Meng-han
    Dong, Qing-li
    Liu, Bao-lin
    Malakar, Pradeep K.
    [J]. JOURNAL OF FOOD PROCESS ENGINEERING, 2014, 37 (01) : 10 - 18
  • [3] Initialization of K-modes clustering using outlier detection techniques
    Jiang, Feng
    Liu, Guozhu
    Du, Junwei
    Sui, Yuefei
    [J]. INFORMATION SCIENCES, 2016, 332 : 167 - 183
  • [4] INTEGRATION OF ARTIFICIAL IMMUNE SYSTEM AND K-MEANS ALGORITHM FOR CUSTOMER CLUSTERING
    Kuo, R. J.
    Chiang, N. J.
    Chen, Z. -Y.
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2014, 28 (06) : 577 - 596
  • [5] Choosing the Number of Clusters in K-Means Clustering
    Steinley, Douglas
    Brusco, Michael J.
    [J]. PSYCHOLOGICAL METHODS, 2011, 16 (03) : 285 - 297
  • [6] Van der Geer J., 2000, J Sci Commun, V163, P51, DOI 10.1016/j.Sc.2010.00372