Global existence and asymptotic stability for coupled nonlinear Klein-Gordon equations with nonlinear damping terms

被引:6
作者
Ye, Yaojun [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math & Informat Sci, Hangzhou 310023, Zhejiang, Peoples R China
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2013年 / 28卷 / 02期
基金
中国国家自然科学基金;
关键词
coupled Klein-Gordon equations; initial-boundary value problem; global solutions; asymptotic stability; SEMILINEAR WAVE-EQUATIONS; HYPERBOLIC EQUATIONS; NONEXISTENCE; INSTABILITY; SYSTEM;
D O I
10.1080/14689367.2013.792330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study coupled nonlinear Klein-Gordon equations with nonlinear damping and source terms, in a bounded domain with the initial and Dirichlet boundary conditions. The existence of global solutions is discussed by using the potential well method, and the asymptotic stability is also given by applying a lemma due to V. Komornik [Exact controllability and stabilization. The multiplier method. Paris: RAM: Research in Applied Mathematics, Masson-John Wiley; 1994].
引用
收藏
页码:287 / 298
页数:12
相关论文
共 23 条
[1]  
Aassila M, 2002, ASYMPTOTIC ANAL, V30, P301
[2]  
[Anonymous], 1965, Proc. Symp. Appl. Math.
[3]  
Cavalcanti MM, 2002, COMM APPL ANAL, V21, P65
[4]  
da Silva Ferreira J, 1994, ASYMPTOTIC ANAL, V8, P73
[5]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[6]   Some remarks on the wave equations with nonlinear damping and source terms [J].
Ikehata, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) :1165-1175
[7]  
Ikheata R., 1996, HIROSHIMA MATH J, V26, P475
[8]  
KOMORNIK V, 1990, J MATH PURE APPL, V69, P33
[9]  
Komornik V., 1994, EXACT CONTROLLABILIT
[10]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21