A GENERALIZATION OF SZEBEHELY'S INVERSE PROBLEM OF DYNAMICS

被引:3
|
作者
Sarlet, W. [1 ,2 ]
Mestdag, T. [1 ]
Prince, G. [2 ]
机构
[1] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
关键词
Szebehely's equation; inverse problem of dynamics; inverse problem of the calculus of variations; HAMILTON-JACOBI THEORY; HELMHOLTZ CONDITIONS; CALCULUS; EQUATION; TRAJECTORIES; SYSTEMS; FAMILIES; ORBITS;
D O I
10.1016/S0034-4877(14)60005-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The so-called inverse problem of dynamics is about constructing a potential for a given family of curves. We observe that there is a more general way of posing the problem by making use of ideas of another inverse problem, namely the inverse problem of the calculus of variations. We critically review and clarify different aspects of the current state of the art of the problem (mainly restricted to the case of planar curves), and then develop our more general approach.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 50 条
  • [31] Homogeneous differential equations and the inverse problem of the calculus of variations
    Rossi, Olga
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 165 - 188
  • [32] Isotropic submanifolds and the inverse problem for mechanical constrained systems
    Barbero-Linan, Maria
    Farre Puiggali, Marta
    Martin de Diego, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (04)
  • [33] Trace formula and inverse nodal problem for a conformable fractional Sturm-Liouville problem
    Mortazaasl, H.
    Akbarfam, A. Jodayree
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2020, 28 (04) : 524 - 555
  • [34] A generalization of Bertrand's theorem to surfaces of revolution
    Zagryadskii, O. A.
    Kudryavtseva, E. A.
    Fedoseev, D. A.
    SBORNIK MATHEMATICS, 2012, 203 (08) : 1112 - 1150
  • [35] Semi-Separable Potentials as Solutions to the 3D Inverse Problem of Newtonian Dynamics
    Kotoulas, Thomas
    SYMMETRY-BASEL, 2024, 16 (02):
  • [36] EXPLICIT SOLUTIONS OF THE THREE-DIMENSIONAL INVERSE PROBLEM OF DYNAMICS, USING THE FRENET REFERENCE FRAME
    Puel, Francois
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1992, 53 (03): : 207 - 218
  • [37] An Inverse Problem on Vakonomic Mechanics
    Oliva W.M.
    Terra G.
    SeMA Journal, 2010, 51 (1): : 141 - 148
  • [38] The inverse problem in mathematical biology
    Clermont, Gilles
    Zenker, Sven
    MATHEMATICAL BIOSCIENCES, 2015, 260 : 11 - 15
  • [39] Inverse problem on conservation laws
    Popovych, Roman O.
    Bihlo, Alexander
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401 (401)
  • [40] Inverse problem for Hawking radiation
    Voelkel, Sebastian H.
    Konoplya, Roman
    Kokkotas, Kostas D.
    PHYSICAL REVIEW D, 2019, 99 (10)