A GENERALIZATION OF SZEBEHELY'S INVERSE PROBLEM OF DYNAMICS

被引:3
作者
Sarlet, W. [1 ,2 ]
Mestdag, T. [1 ]
Prince, G. [2 ]
机构
[1] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
关键词
Szebehely's equation; inverse problem of dynamics; inverse problem of the calculus of variations; HAMILTON-JACOBI THEORY; HELMHOLTZ CONDITIONS; CALCULUS; EQUATION; TRAJECTORIES; SYSTEMS; FAMILIES; ORBITS;
D O I
10.1016/S0034-4877(14)60005-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The so-called inverse problem of dynamics is about constructing a potential for a given family of curves. We observe that there is a more general way of posing the problem by making use of ideas of another inverse problem, namely the inverse problem of the calculus of variations. We critically review and clarify different aspects of the current state of the art of the problem (mainly restricted to the case of planar curves), and then develop our more general approach.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 31 条
[1]   An EDS approach to the inverse problem in the calculus of variations [J].
Aldridge, J. E. ;
Prince, G. E. ;
Sarlet, W. ;
Thompson, G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[2]  
Anderson I., 1992, MEM AM MATH SOC, V473
[3]   An alternative point of view on the equations of the inverse problem of dynamics [J].
Anisiu, MC .
INVERSE PROBLEMS, 2004, 20 (06) :1865-1872
[4]  
ANISIU MC, 2004, STUD U BABES BOLYAI, V49, P13
[5]  
[Anonymous], GIORN MAT
[6]  
BORGHERO F, 1987, REND SEM MAT U POLIT, V45, P125
[7]  
BOZIS G, 1984, ASTRON ASTROPHYS, V134, P360
[8]   THE INVERSE PROBLEM OF DYNAMICS - BASIC FACTS [J].
BOZIS, G .
INVERSE PROBLEMS, 1995, 11 (04) :687-708
[9]   INVERSE PROBLEM WITH 2-PARAMETRIC FAMILIES OF PLANAR ORBITS [J].
BOZIS, G .
CELESTIAL MECHANICS, 1983, 31 (02) :129-142
[10]   FAMILY BOUNDARY CURVES FOR AUTONOMOUS DYNAMICAL-SYSTEMS [J].
BOZIS, G .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (01) :161-172