Interpolation of Missing Data in Sensor Networks Using Nonnegative Matrix Factorization

被引:2
作者
Suyama, Takayuki [1 ]
Kishino, Yasue [1 ]
Shirai, Yoshinari [1 ]
Mizutani, Shin [1 ]
Sawada, Hiroshi [1 ]
机构
[1] NTT Commun Sci Labs, 2-4 Hikaridai, Seika, Kyoto 6190237, Japan
来源
PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT) | 2018年
关键词
Sensor networks; Interpolation; Nonnegative Matrix Factorization;
D O I
10.1145/3267305.3267585
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method that interpolates missing values from sensor nodes in a sensor network using Nonnegative Matrix Factorization. Since nearby sensor nodes take approximate values, more reliable interpolation is possible with these values. We carried out experiments and evaluations using the data of sensors deployed in a real environment.
引用
收藏
页码:263 / 266
页数:4
相关论文
共 3 条
[1]   Agile Environmental Monitoring Exploits Rapid Prototyping and In Situ Adaptation [J].
Kishino, Yasue ;
Yanagisawa, Yutaka ;
Shirai, Yoshinari ;
Mizutani, Shin ;
Suyama, Takayuki ;
Naya, Futoshi .
IEEE PERVASIVE COMPUTING, 2017, 16 (02) :61-71
[2]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[3]  
Takeuchi K., 2013, P 23 INT JOINT C ART, P1713