A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES

被引:32
作者
Nochetto, Ricardo H. [1 ,2 ]
Salgado, Abner J. [1 ]
Walker, Shawn W. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Electrowetting; Navier-Stokes; Cahn-Hilliard; multiphase flow; contact line; PHASE-FIELD MODEL; CAHN-HILLIARD EQUATION; SURFACE-TENSION; VARIATIONAL APPROACH; BEHAVIOR; APPROXIMATION; DYNAMICS; MIXTURE; FLUIDS; ANGLE;
D O I
10.1142/S0218202513500474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a diffuse interface model for the phenomenon of electrowetting on dielectric and present an analysis of the arising system of equations. Moreover, we study discretization techniques for the problem. The model takes into account different material parameters on each phase and incorporates the most important physical processes, such as incompressibility, electrostatics and dynamic contact lines; necessary to properly reflect the relevant phenomena. The arising nonlinear system couples the variable density incompressible Navier-Stokes equations for velocity and pressure with a Cahn-Hilliard type equation for the phase variable and chemical potential, a convection diffusion equation for the electric charges and a Poisson equation for the electric potential. Numerical experiments are presented, which illustrate the wide range of effects the model is able to capture, such as splitting and coalescence of droplets.
引用
收藏
页码:67 / 111
页数:45
相关论文
共 74 条
[1]   THERMODYNAMICALLY CONSISTENT, FRAME INDIFFERENT DIFFUSE INTERFACE MODELS FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH DIFFERENT DENSITIES [J].
Abels, Helmut ;
Garcke, Harald ;
Gruen, Guenther .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (03)
[2]  
Adams R. A., 2003, PURE APPL MATH, V140
[3]  
Alt W., 2009, FLUIDS SOLIDS ADV MA, V19, P585
[4]   Lattice Boltzmann simulation of droplet base electrowetting [J].
Aminfar, H. ;
Mohammadpourfard, M. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (05) :143-156
[5]   Lattice Boltzmann method for electrowetting modeling and simulation [J].
Aminfar, H. ;
Mohammadpourfard, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (47-48) :3852-3868
[6]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[7]  
[Anonymous], 1986, SPRINGER SERIES COMP
[8]   Electron-induced wettability modification [J].
Aronov, Daniel ;
Molotskii, Michel ;
Rosenman, Gil .
PHYSICAL REVIEW B, 2007, 76 (03)
[9]   Preconditioning a class of fourth order problems by operator splitting [J].
Baensch, Eberhard ;
Morin, Pedro ;
Nochetto, Ricardo H. .
NUMERISCHE MATHEMATIK, 2011, 118 (02) :197-228
[10]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)