Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities

被引:34
作者
Canino, A. [1 ]
Grandinetti, M. [1 ]
Sciunzi, B. [1 ]
机构
[1] UNICAL, Dipartimento Matemat, I-87036 Cosenza, Italy
关键词
Singular semilinear equations; Symmetry of solutions; Moving plane method; ASYMPTOTIC SYMMETRY; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jde.2013.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive solutions to the singular semilinear elliptic equation -Delta u = 1/u(gamma) + f (u), in bounded smooth domains, with zero Dirichlet boundary conditions. We provide some weak and strong maximum principles for the H-0(1)(Omega) part of the solution (the solution u generally does not belong to H-0(1)(Omega)), that allow to deduce symmetry and monotonicity properties of solutions, via the Moving Plane Method. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4437 / 4447
页数:11
相关论文
共 24 条
[11]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[12]  
Crandall M. G., 1977, PARTIAL DIFFERENTIAL, V2, P193
[13]  
Da Lio F, 2007, J EUR MATH SOC, V9, P317
[14]   SINGULAR NONLINEAR BOUNDARY-VALUE PROBLEMS FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GATICA, JA ;
OLIKER, V ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (01) :62-78
[15]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[16]   Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem [J].
Hirano, Norimichi ;
Saccon, Claudio ;
Shioji, Naoki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (08) :1997-2037
[17]  
Hirano N, 2004, ADV DIFFERENTIAL EQU, V9, P197
[18]   Classical and weak solutions of a singular semilinear elliptic problem [J].
Lair, AV ;
Shaker, AW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) :371-385
[19]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[20]  
Li C, 1991, COMMUN PART DIFF EQ, V61, P585