A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate

被引:132
作者
Luo, Yuwen [1 ,2 ]
Liu, Luojia [2 ]
Lei, Kaixiang [2 ]
Shi, Jifu [3 ]
Xu, Gang [1 ]
Li, Fujun [2 ]
Chen, Jun [2 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
[2] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Jinan Univ, Dept Phys, Siyuan Lab, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRODES; NANOWIRES; ANODES;
D O I
10.1039/c8sc04489a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonaqueous potassium-ion hybrid capacitors (KIHCs) are faced with limited redox reaction kinetics of electrodes for accommodation of large-sized K+. Here, dipotassium terephthalate (K2TP) is applied as an organic negative electrode to provide comparable reaction kinetics with a non-faradaic activated carbon (AC) positive electrode to boost the electrochemical performance of KIHCs. It is revealed that the large exchange current density and fast two-dimensional (2D) diffusion pathways of K+ in K2TP determined by density functional theory (DFT) calculations ensure its fast redox reaction and transport kinetics. The asconstructed KIHC presents both high energy and power densities of 101 W h kg(-1) and 2160 W kg(-1) based on the mass of the two electrodes (41.5 W h kg(-1) and 885.2 W kg(-1) based on the mass of the two electrodes and electrolyte), respectively, and a superior capacity retention of 97.7% after 500 cycles. The excellent electrochemical performance is attributed to the fast kinetics, good structural flexibility, and small volume change (9.4%) of K2TP upon K+ insertion/extraction, and its good compatibility with the AC positive electrode in 1,2-dimethoxyethane (DME)-based electrolyte. This will promote application of organic materials in hybrid capacitors and the development of KIHCs.
引用
收藏
页码:2048 / 2052
页数:5
相关论文
共 36 条
[1]  
[Anonymous], NAT MAT
[2]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/NMAT2372, 10.1038/nmat2372]
[3]   Alternative electrochemical energy storage: potassium-based dual-graphite batteries [J].
Beltrop, K. ;
Beuker, S. ;
Heckmann, A. ;
Winter, M. ;
Placke, T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2090-2094
[4]   Organic electrode for non-aqueous potassium-ion batteries [J].
Chen, Yanan ;
Luo, Wei ;
Carter, Marcus ;
Zhou, Lihui ;
Dai, Jiaqi ;
Fu, Kun ;
Lacey, Steven ;
Li, Tian ;
Wan, Jiayu ;
Han, Xiaogang ;
Bao, Yanping ;
Hu, Liangbing .
NANO ENERGY, 2015, 18 :205-211
[5]   Asymmetric Supercapacitor Electrodes and Devices [J].
Choudhary, Nitin ;
Li, Chao ;
Moore, Julian ;
Nagaiah, Narasimha ;
Zhai, Lei ;
Jung, Yeonwoong ;
Thomas, Jayan .
ADVANCED MATERIALS, 2017, 29 (21)
[6]   Ultrathin Mesoporous RuCo2O4 Nanoflakes: An Advanced Electrode for High-Performance Asymmetric Supercapacitors [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Holze, Rudolf ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMSUSCHEM, 2017, 10 (08) :1771-1782
[7]   A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device [J].
Fan, Ling ;
Lin, Kairui ;
Wang, Jue ;
Ma, Ruifang ;
Lu, Bingan .
ADVANCED MATERIALS, 2018, 30 (20)
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   Indicative energy technology assessment of advanced rechargeable batteries [J].
Hammond, Geoffrey P. ;
Hazeldine, Tom .
APPLIED ENERGY, 2015, 138 :559-571
[10]   Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries [J].
Jian, Zelang ;
Liang, Yanliang ;
Rodriguez-Perez, Ismael A. ;
Yao, Yan ;
Ji, Xiulei .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 71 :5-8