Lower estimates for non-linear Volterra equations

被引:3
作者
Arias, MR [1 ]
Castillo, JMF [1 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
non-linear Volterra equations; estimates for solutions;
D O I
10.1016/S0362-546X(98)00201-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear convolution integral equation of the Volterra type is presented. The operator of the equation is called associated operator. This type of equation appears in connection with several physical models. The physical models considered impose some restrictions on the kernel and nonlinearity. The lower estimates of equation are analyzed.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 16 条
[1]  
[Anonymous], J INTEGRAL EQNS APPL
[2]   Inverse characterizations of the existence of solutions for some nonlinear Abel-Volterra equations [J].
Arias, MR ;
Castillo, JMF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (03) :433-442
[3]  
ASHKABOV SN, 1986, DIFF URAVN, V22, P1606
[4]   UNIQUENESS OF SOLUTIONS FOR A CLASS OF NON-LINEAR VOLTERRA INTEGRAL-EQUATIONS WITH CONVOLUTION KERNEL [J].
BUSHELL, PJ ;
OKRASINSKI, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 106 :547-552
[5]   NONLINEAR VOLTERRA INTEGRAL-EQUATIONS WITH CONVOLUTION KERNEL [J].
BUSHELL, PJ ;
OKRASINSKI, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 :503-510
[6]   CLASS OF VOLTERRA AND FREDHOLM NONLINEAR INTEGRAL-EQUATIONS [J].
BUSHELL, PJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (MAR) :329-335
[7]   BOYD INDEX AND NONLINEAR VOLTERRA-EQUATIONS [J].
CASTILLO, JMF ;
OKRASINSKI, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (06) :721-732
[8]  
DEGUZMAN M, 1970, INTEGRACION TEORIA T
[9]  
Gripenberg G., 1990, Encyclopedia of Mathematics and its Applications
[10]   PROPAGATION OF SIMPLE NON-LINEAR WAVES IN GAS FILLED TUBES WITH FRICTION [J].
KELLER, JJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1981, 32 (02) :170-181